## Math 125 Exam \#3 Key (Fall 2020)

1 Domain is all $x$ for which $(2 x+3) /(x-1)>0$, occurring if $2 x+3>0$ and $x-1>0$, or if $2 x+3<0$ and $x-1<0$. The first case has solution $x>1$, the second case has solution $x<-\frac{3}{2}$. The domain is therefore $\left(-\infty,-\frac{3}{2}\right) \cup(1, \infty)$.

2a Let $y=f(x)$, so $y=1-6 \log _{4}(3-x)$, and hence $4^{(1-y) / 6}=3-x$. Solving for $x$ gives $x=3-4^{(1-y) / 6}$, and therefore

$$
f^{-1}(y)=3-4^{(1-y) / 6}
$$

2b $\operatorname{Ran} f^{-1}=\operatorname{Dom} f=(-\infty, 3)$ and $\operatorname{Ran} f=\operatorname{Dom} f^{-1}=(-\infty, \infty)$.

3 By the $\mathbb{L A W S} \mathbb{O F} \mathbb{L O G A R I T H M}$, the expression becomes

$$
\log _{b}(2 x+4)^{3}-\log _{b}(1-2 x)^{2}-\log _{b}(2 x)=\log _{b} \frac{(2 x+4)^{3}}{2 x(1-2 x)^{2}}
$$

4 Let $y=f(x)$. Then $y=\log _{a} x$, whence

$$
a^{y}=x \Rightarrow(1 / a)^{-y}=x \Rightarrow \log _{1 / a}(1 / a)^{-y}=\log _{1 / a} x \Rightarrow-y=\log _{1 / a} x
$$

and therefore $-f(x)=\log _{1 / a} x$.
5a We get $\ln \left(\frac{x+1}{x}\right)=2$, so $e^{2}=\frac{x+1}{x}$ and thus $x=\left(e^{2}-1\right)^{-1}$.

5b Rewrite as $\log _{2}\left(\frac{x}{25}\right)=\log _{2}\left(\frac{x+1}{100}\right)$, so $\frac{x}{25}=\frac{x+1}{100}$ and hence $x=\frac{1}{3}$.

5c Let $u=\log _{3} x$, so equation becomes $u^{2}-5 u-6=0$, which has solutions $u=-1,6$. So $\log _{3} x=-1$ or $\log _{3} x=6$, giving solutions $x=\frac{1}{3}$ and $x=3^{6}=729$.

5d Write equation as $\left(3^{x}\right)^{2}-3 \cdot 3^{x}+1=0$. Let $u=3^{x}$ so equation becomes $u^{2}-3 u+1=0$, and solve this to get $u=\frac{3 \pm \sqrt{5}}{2}$. Thus $3^{x}=\frac{3 \pm \sqrt{5}}{2}$, and so $x=\log _{3}\left(\frac{3 \pm \sqrt{5}}{2}\right)$.

5e With the Change-of-Base Formula we get

$$
\log _{2}(3 x+2)-\frac{\log _{2} x}{\log _{2} 4}=3 \Rightarrow \log _{2}(3 x+2)-\frac{1}{2} \log _{2} x=3 \Rightarrow \log _{2} \frac{3 x+2}{\sqrt{x}}=3
$$

and thus

$$
\frac{3 x+2}{\sqrt{x}}=2^{3} \Rightarrow 3(\sqrt{x})^{2}-8 \sqrt{x}+2=0 \Rightarrow \sqrt{x}=\frac{4 \pm \sqrt{10}}{3}
$$

Solution set is $\left\{\left(\frac{4 \pm \sqrt{10}}{3}\right)^{2}\right\}$.

6a $N(t)=N_{0} e^{k t}$.

6b Let $t=0$ for the year 2004 , so $N_{0}=N(0)=900,000$, and then $N(t)=900,000 e^{k t}$. Using $N(4)=800,000$ gives

$$
800,000=900,000 e^{4 k} \Rightarrow k=\frac{1}{4} \ln \frac{8}{9},
$$

so

$$
N(t)=900,000 e^{(t / 4) \ln (8 / 9)}=900,000\left(\frac{8}{9}\right)^{t / 4}
$$

Population in 2012 is thus

$$
N(8)=900,000\left(\frac{8}{9}\right)^{2} \approx 711,111
$$

7 We're given $u_{0}=100^{\circ} \mathrm{C}$ (so $\left.u(0)=100\right), T=22^{\circ} \mathrm{C}$, and also $u(30)=80$. With Newton's Law of Cooling:

$$
80=u(30)=22+(100-22) e^{30 k}
$$

which gives $k=\frac{1}{30} \ln \frac{58}{78} \approx-0.00988$. Thus the model is

$$
u(t)=22+78 e^{-0.00988 t}
$$

After another 30 minutes (when $t=60$ ), the temperature is

$$
u(60)=22+78 e^{-0.00988(60)} \approx 65.1^{\circ} \mathrm{C}
$$

8 Convert $0.329^{\circ}$ to minutes:

$$
\left(0.329^{\circ}\right)\left(\frac{60^{\prime}}{1^{\circ}}\right)=19.74^{\prime}
$$

Convert $0.74^{\prime}$ to seconds, and round to the nearest second:

$$
\left(0.74^{\prime}\right)\left(\frac{60^{\prime \prime}}{1^{\prime}}\right)=44.4^{\prime \prime} \approx 44^{\prime \prime}
$$

Therefore $107.329^{\circ} \approx 107^{\circ} 19^{\prime} 44^{\prime \prime}$.

9 The point given lies on a circle of radius $\sqrt{5}$, so:

$$
\sin \theta=-\frac{2}{\sqrt{5}}, \quad \cos \theta=-\frac{1}{\sqrt{5}}, \quad \tan \theta=2, \quad \csc \theta=-\frac{\sqrt{5}}{2}, \quad \sec \theta=-\sqrt{5}, \quad \cot \theta=\frac{1}{2}
$$

10 We need only use fundamental trigonometric identities to find that
$\tan \theta=\frac{\sin \theta}{\cos \theta}=\sqrt{3}, \quad \cot \theta=\frac{1}{\tan \theta}=\frac{1}{\sqrt{3}}, \quad \csc \theta=\frac{1}{\sin \theta}=\frac{2}{\sqrt{3}}, \quad \sec \theta=\frac{1}{\cos \theta}=2$.

11 Right off we have $\tan \theta=\frac{3}{4}$. Now, $\cos \theta<0$ implies $\theta$ is in quadrant QII or QIII, while $\cot \theta<0$ implies $\theta$ is in QI or QIII. Thus $\theta$ is in QIII, and since $\sec \theta<0$ in QIII, we have

$$
\sec ^{2} \theta=1+\tan ^{2} \theta \Rightarrow \sec \theta=-\sqrt{1+\tan ^{2} \theta}=-\sqrt{1+(3 / 4)^{2}}=-\frac{5}{4}
$$

The rest come easily:

$$
\cos \theta=-\frac{4}{5}, \quad \sin \theta=\cos \theta \tan \theta=-\frac{4}{5} \cdot \frac{3}{4}=-\frac{3}{5}, \quad \csc \theta=-\frac{5}{3}
$$

