Math 125 Exam \#1 Key (Fall 2020)

1a $\operatorname{Dom}(q)=\left\{x: x^{3}+4 x^{2} \neq 0\right\}=(-\infty,-4) \cup(-4,0) \cup(0, \infty)$.

1b $\operatorname{Dom}(v)=\{t:-t-5>0\}=(-\infty,-5)$.

2a We have

$$
(f-g)(x)=\frac{3}{2 x}-\frac{x+1}{x-1},
$$

with

$$
\begin{aligned}
\operatorname{Dom}(f-g) & =\operatorname{Dom}(f) \cap \operatorname{Dom}(g)=\{x: x \neq 0\} \cap\{x: x \neq 1\} \\
& =(-\infty, 0) \cup(0,1) \cup(1, \infty) .
\end{aligned}
$$

2b We have

$$
(f / g)(x)=\frac{3}{2 x} \div \frac{x+1}{x-1}=\frac{3(x-1)}{2 x(x+1)}
$$

with domain the same as $\operatorname{Dom}(f-g)$ except we must also exclude x such that $g(x)=0$ (i.e. $x=-1$). Thus

$$
\operatorname{Dom}(f / g)=(-\infty,-1) \cup(-1,0) \cup(0,1) \cup(1, \infty)
$$

3 We have

$$
16=f(-1)=3(-1)^{2}-C(-1)+9=C+12 \Rightarrow C=4 .
$$

4a $\operatorname{Dom}(F)=[-4,5)$ and $\operatorname{Ran}(F)=[-2,2] \cup\{3\}$.

4b Definition for F :

$$
f(x)=\left\{\begin{array}{ccc}
-2 x-6, & -4 \leq x \leq-2 \\
x, & & -2<x<0 \\
3, & & 0 \leq x<5
\end{array}\right.
$$

5 Solve $f(x)=g(x)$, or $x^{2}+2 x-24=0$. Factoring yields $(x+6)(x-4)=0$, giving $x=-6,4$, and hence the intersection points $(-6, f(-6))=(-6,3)$ and $(4, f(4))=(4,33)$.

6 Vertex is at $(-b / 2 a, f(-b / 2 a))=\left(-\frac{5}{4},-\frac{1}{8}\right)$. Range of f is $\left[-\frac{1}{8}, \infty\right)$.

7 Let x and y be the length and width of the rectangle, so $2 x+2 y=200$, and thus $y=100-x$. Now the area $x y$ of the rectangle is, as a function of x, found to be

$$
A(x)=x(100-x)=-x^{2}+100 x
$$

The vertex of this quadratic function is at $x=-b / 2 a=50$ (where $a=-1$ and $b=100$). The vertex is the maximum point on the parabola, and hence the area is maximized when $x=50$ and $y=100-50=50$. That is, a $50 \mathrm{~m} \times 50 \mathrm{~m}$ square yields the maximum area.

8 With the quadratic formula, $P(x)=0$ implies $x=\frac{-6 \pm \sqrt{32}}{2}=-3 \pm 2 \sqrt{2}$. These are the complex zeros of P. (Recall that real numbers are considered a subset of the complex number system.)

9 Either $x^{2}+x=12$ or $x^{2}+x=-12$. The first equation gives $x=-4,3$, while the second gives the complex numbers $-\frac{1}{2} \pm i \frac{\sqrt{47}}{2}$. Only the real solutions are required here, with extra credit given if the nonreal solutions are obtained.

10 Isolate the absolute value term to get

$$
|4 x-1|<7 \Rightarrow-7<4 x-1<7 \Rightarrow-\frac{3}{2}<x<2
$$

and so $\left(-\frac{3}{2}, 2\right)$ is the solution set.

