1 Domain is $(-\infty, \infty)$ and range is $(5, \infty)$.

2 Equation becomes $e^{x^2+4x} = e^{12}$, and so $x^2 + 4x = 12$. This solves to give solution set $\{-6, 2\}$.

3 Domain is

$$\left\{x:\frac{3x}{2x+11} > 0\right\} = (-\infty, -\frac{11}{2}) \cup (0, \infty).$$

4 This becomes $e^{-0.2x} = -12$, which has no solution since the range of the exponential function is $(0, \infty)$.

5 Find h such that $400 = 760e^{-0.145h}$, which implies $-0.145h = \ln(400/760)$, and hence

$$h = -\frac{1}{0.145} \ln\left(\frac{10}{19}\right) \approx 4.43 \text{ km}.$$

6 With laws of logarithms:

$$\log_2 \frac{(x-3)^3}{(2x-1)(x+1)}$$

7a We have

$$\log_6(x+4)(x+3) = 1 \implies (x+4)(x+3) = 6 \implies x = -6, -1.$$

The value -6 is an extraneous solution, and so the solution set is $\{-1\}$.

7b Taking logarithms of both sides:

$$x\ln(3/5) = (1-x)\ln 7 \implies x = \frac{\ln 7}{\ln(3/5) + \ln 7} = \frac{\ln 7}{\ln(21/5)}.$$

8a $A(11) = 100e^{-0.087(11)} \approx 38.4$ g.

8b Find t for which
$$A(t) = \frac{1}{2}A_0$$
:
 $\frac{1}{2}A_0 = A_0e^{-0.087t} \Rightarrow e^{-0.087t} = \frac{1}{2} \Rightarrow -0.087t = \ln(1/2) \Rightarrow t \approx 7.97$ days.

Note that the value of A_0 is irrelevant.

9 140°32′49″.

10
$$\sin \theta = -\frac{12}{13}, \cos \theta = \frac{5}{13}, \tan \theta = -\frac{12}{5}, \csc \theta = -\frac{13}{12}, \sec \theta = \frac{13}{5}, \cot \theta = -\frac{5}{12}.$$

11
$$\cos\theta = -\frac{\sqrt{5}}{3}$$
, $\tan\theta = \frac{2}{\sqrt{5}}$, $\csc\theta = -\frac{3}{2}$, $\sec\theta = -\frac{3}{\sqrt{5}}$, $\cot\theta = \frac{\sqrt{5}}{2}$.

12 Domain is $(-\infty, \infty)$, and range is [-3, 5].

13 Domain is

 $\left\{x:\frac{3\pi}{2}x\neq\frac{\pi}{2}+k\pi \text{ for any integer } k\right\} = \left\{x:x\neq\frac{2k+1}{3} \text{ for any integer } k\right\},$ range is $(-\infty, -3] \cup [3, \infty).$

14 $y = 4\cos(12x)$.