Math 125 Exam \#1 Key (Fall 2019)

$1 f(-4)=-39$ and $f(-x)=-2 x^{2}-x-3$.

2a Domain of g is $\left\{x: 4-4 x^{2} \neq 0\right\}=\{x: x \neq \pm 1\}$.

2b Domain of h is $\{t:-t-3 \geq 0$ and $3 t-15 \neq 0\}=(-\infty,-3]$

3a We have

$$
(f \cdot g)(x)=\left(1+\frac{1}{2 x}\right)\left(\frac{1}{x-6}\right),
$$

with domain $\{x: x \neq 0,6\}$.

3b We have

$$
(f / g)(x)=\frac{1+\frac{1}{2 x}}{\frac{1}{x-6}}=\frac{(2 x+1)(x-6)}{2 x}
$$

with domain $\{x: x \neq 0,6\}$.
4a Since $f(-x)=-3(-x)^{2}-5=-3 x^{2}-5=f(x), f$ is even.
4b Since $g(-x)=\frac{-(-x)^{3}}{3(-x)^{2}-9}=\frac{x^{3}}{3 x^{2}-9}=-g(x), g$ is odd.

5 Definition of f :

$$
f(x)=\left\{\begin{array}{cl}
-\frac{5}{2} x-7, & x \in[-4,-2] \\
x, & x \in(-2,0] \\
-2 x+4, & x \in(0,4)
\end{array}\right.
$$

6a Cut the wire into lengths $3 x$ and $10-3 x$. With the $3 x$ piece made an equilateral triangle with sides of length x, and with the $10-3 x$ piece make a circle. The area of the triangle is $\frac{\sqrt{3}}{4} x^{2}$, and the area of the circle (which has circumference $\left.10-3 x\right)$ is $(10-3 x)^{2} / 4 \pi$. Total area is

$$
A(x)=\frac{\sqrt{3}}{4} x^{2}+\frac{(10-3 x)^{2}}{4 \pi}
$$

6b Domain of A is $\{x: 0<3 x<10\}$, or $\left(0, \frac{10}{3}\right)$.
7 Solve $F(x)=0$, or $2 x^{2}-3 x-1=0$, using the quadratic formula or completing the square to get the zeros $(3 \pm \sqrt{17}) / 4$, which are also the x-intercepts.

8 Solve $h(x)=0$, which becomes

$$
x^{2}+x+\frac{1}{2}=0 \Rightarrow\left(x^{2}+x+\frac{1}{4}\right)=-\frac{1}{4} \quad \Rightarrow \quad\left(x+\frac{1}{2}\right)^{2}=-\frac{1}{4} \quad \Rightarrow \quad x+\frac{1}{2}= \pm \frac{i}{2},
$$

and thus $x=-\frac{1}{2} \pm \frac{1}{2} i$.
9 We have $x^{2}-7 x-8>0$, or $(x-8)(x+1)>0$, which is satisfied if $x>8$ or $x<-1$. Solution set: $(-\infty,-1) \cup(8, \infty)$.

10a With length x and width y the perimeter of the rectangle is $2 x+2 y=3000$, so $y=$ $1500-x$. Area of rectangle is thus

$$
A(x)=x y=x(1500-x)=-x^{2}+1500 x=-(x-750)^{2}+750^{2}
$$

10b Area is greatest when $x=750$.
10c Maximum area is $A(750)=750^{2}$.

11 Write $|1-3 t|=4$, so either $1-3 t=4$ or $1-3 t=-4$. Solution set: $\left\{-1, \frac{5}{3}\right\}$.

12 Write $|y-1|>25$, so either $y-1<-25$ or $y-1>25$. Solution set: $(-\infty,-24) \cup(26, \infty)$.

