MATH 125 EXAM #1 KEY (FALL 2010)

1.
$$D = \sqrt{(10-2)^2 + (3-(-3))^2} = \sqrt{100} = 10.$$

- 2. y-intercept: set x = 0 and solve for y to get y = 9; so (0,9) is the y-intercept. x-intercept: set y = 0 to get $9x^2 = 36 \implies x = \pm 2$; so $(\pm 2,0)$ are the x-intercepts. Symmetry is with respect to the y-axis.
- 3. $4(x-4) 5 \cdot 4(x+1) = 21(x+1)(x-4) \Rightarrow 21x^2 47x 48 = 0 \Rightarrow x = \frac{47 \pm \sqrt{47^2 4(21)(-48)}}{42} = \frac{47 \pm 79}{42} \in \left\{3, -\frac{16}{21}\right\}.$
- **4.** Slope of line is $m = \frac{-8 (-5)}{-6 2} = \frac{3}{8}$. Now use the point-slope formula to get $y + 5 = \frac{3}{8}(x 2)$, which leads to $y = \frac{3}{8}x \frac{23}{4}$.
- **5.** The center of the circle lies at the midpoint between (1,4) & (-3,2), at $\left(\frac{1+(-3)}{2},\frac{4+2}{2}\right)=(-1,3)$. The radius of the circle is the distance between (-1,3) and (1,4): $r=\sqrt{2^2+1^2}=\sqrt{5}$. Equation of circle: $(x+1)^2+(y-3)^2=5$.

6.
$$f(-1) = -\frac{1}{2}$$
 and $f(x+1) = \frac{x+1}{(x+1)^2 + 1}$.

7a. Dom
$$f = \{x \mid x \neq \pm 6\}$$

7b. Dom
$$g = \{x \mid 3x \ge 12\} = \{x \mid x \ge 4\} = [4, \infty).$$

7c. Dom
$$f + g = \text{Dom } f \cap \text{Dom } g = [4, 6) \cup (6, \infty).$$

7d. Dom $f/g = (4,6) \cup (6,\infty)$, where we have to exclude 4 from Dom $f \cap$ Dom g since g(4) = 0.

8a. Yes, since
$$f(-1) = 2(-1)^2 - (-1) - 1 = 2$$
.

8b.
$$f(-2) = 2(-2)^2 - (-2) - 1 = 9$$
, and the corresponding point on the graph is $(-2, 9)$.

8c. We have $2x^2-x-1=-1$, whence $2x^2-x=0 \Rightarrow x(2x-1)=0 \Rightarrow x=0,\frac{1}{2}$, and the corresponding points on the graph are (0,-1) and (1/2,-1).

9a. Dom $f = [-2, 0) \cup (0, \infty)$ and Ran $f = (0, \infty)$.

9b. Note: there will be an open circle at the origin, but it was going to be WWIII with the graphing application I was using to try to get it in there.

10. Start with $f(x) = \sqrt{x}$. Shift up 3 units gives a new function: g(x) = f(x) + 3. Reflecting g about the x-axis gives a new function: h(x) = -g(x). Shifting left by 5 units gives yet another new function: k(x) = h(x+5). Our result is: k(x) = h(x+5) = -g(x+5) = -[f(x+5) + 3], or $y = -(\sqrt{x+5} + 3) = -\sqrt{x+5} - 3$.

11. In general $A = \pi r^2$. But circumference C is given by $C = 2\pi r$ and we know that C must equal x. Hence $x = 2\pi r$, which yields $r = \frac{x}{2\pi}$. Therefore A as a function of x is given by: $A(x) = \pi \left(\frac{x}{2\pi}\right)^2$, or $A(x) = \frac{x^2}{4\pi}$.

12. $(f \circ g)(4) = f(g(4)) = f(12) = \sqrt{13}$ and $(g \circ f)(2) = g(f(2)) = g(\sqrt{3}) = 3\sqrt{3}$.

13a $(f \circ f)(x) = f(f(x)) = \frac{f(x) - 5}{f(x) + 1} = \frac{\frac{x - 5}{x + 1} - 5}{\frac{x - 5}{x + 1} + 1} = \frac{2x + 5}{2 - x}.$

13b. First, Dom $f = \{x \mid x \neq -1\}$ and Dom $g = \{x \mid x \neq 3\}$. Now, by definition, Dom $g \circ f = \{x \mid x \in \text{Dom } f \text{ and } f(x) \in \text{Dom } g\} = \left\{x \mid x \neq -1 \text{ and } \frac{x-5}{x+1} \neq 3\right\} = \{x \mid x \neq -1 \text{ and } x \neq -4\}.$

13c. By definition, Dom $f \circ g = \{x \mid x \in \text{Dom } g \text{ and } g(x) \in \text{Dom } f\} = \left\{x \mid x \neq 3 \text{ and } \frac{x+2}{x-3} \neq -1\right\} = \{x \mid x \neq 3 \text{ and } x \neq 1/2\}.$

2