1. 15 pts . Zebediah Torkelson has 80 meters of fencing to enclose a rectangular region. Construct a quadratic function to determine what the dimensions of the rectangle should be to maximize the enclosed area. What is the maximum area?
2. 10 pts . Find the complex zeros of $f(x)=3 x^{2}+6 x+4$.
3. 10 pts. Solve $\left|x^{2}+3 x\right|=5$.
4. 10 pts . Solve $|x+6| \geq 7$ and write the solution in interval notation.
5. 15 pts. Construct a polynomial function of degree 6 having zeros 3 (with multiplicity 2), -4 (with multiplicity 1), and 1 (with multiplicity 3), and whose graph contains the point ($-1,20$). Do not bother to expand the product.
6. 15 pts . Construct a polynomial function of degree 3 having real coefficients and zeros 6 and $1-2 i$. Expand the product to write the polynomial in standard form.
7. 15 pts. Let $G(x)=2 x^{4}+11 x^{3}-5 x^{2}-43 x+35$. Use the Rational Zeros Theorem to find all the real zeros of G, then use the zeros to factor $G(x)$ over the real numbers.
8. 10 pts . Find all solutions (real or complex) to the equation

$$
x^{3}-8 x^{2}+25 x-26=0 .
$$

9. 10 pts . Given that $3 i$ is a zero of

$$
H(x)=3 x^{4}+5 x^{3}+25 x^{2}+45 x-18
$$

find the remaining zeros of H.
10. 15 pts. Find all asymptotes for the rational function

$$
K(x)=\frac{x^{3}+x}{x^{2}-5 x+6} .
$$

11. 10 pts. each Solve each inequality algebraically, writing the solution set in interval notation.
(a) $x^{4}>16$
(b) $x^{3}-2 x^{2}-3 x<0$.
(c) $\frac{3 x-5}{x+2} \geq 2$
