1. 10 pts. Given that $3 i$ is a zero of $f(x)=3 x^{4}+5 x^{3}+25 x^{2}+45 x-18$, find all remaining zeros of f.
2. 10 pts. Find the complex zeros of $g(x)=4 x^{3}+4 x^{2}-7 x+2$, and write $g(x)$ in factored form.
3. 10 pts. Find k such that $h(x)=x^{4}-k x^{3}+k x^{2}+1$ has the factor $x+2$.
4. 10 pts . Find all asymptotes of the rational function

$$
J(x)=\frac{8 x^{2}+26 x-7}{4 x+1} .
$$

5. 10 pts. each Solve each inequality algebraically, giving the solution set in interval notation.
(a) $x^{3}+x^{2}<4 x+4$
(b) $\frac{x-3}{x+1}>0$
(c) $\frac{2 x-6}{1-x} \leq 2$
6. 10 pts. each Let

$$
f(x)=\sqrt{x-1} \quad \text { and } \quad g(x)=1+x^{2} .
$$

(a) Evaluate $(g \circ g)(-2)$ and $(f \circ f)(82)$.
(b) Find $f \circ g$, and state its domain in interval notation.
(c) Find $g \circ f$, and state its domain in interval notation.
(d) Find $f \circ f$, and state its domain in interval notation.
7. 10 pts. If $f(x)=3 x^{2}-7$ and $g(x)=2 x+c$, find the value of c so that the graph of $f \circ g$ crosses the y-axis at 68 .
8. 10 pts. Let

$$
F(x)=\frac{2 x-3}{x+4}
$$

which is one-to-one.
(a) Find the inverse function F^{-1}.
(b) Find the domain and range of F and F^{-1}.

