1. 10 pts. Find the domain and range of the function: $f(x)=5+8^{x / 2}$.
2. 10 pts. Solve for $x:\left(e^{4}\right)^{x} \cdot e^{x^{2}}=e^{12}$.
3. 10 pts . Find the domain of the function

$$
g(x)=\ln \left(\frac{3 x}{2 x+11}\right)
$$

4. 10 pts . Find the exact solution to $-e^{-0.2 x}=12$.
5. 10 pts . The atmospheric pressure $p$ on an object decreases with increasing altitude. Measured in millimeters of mercury ( mmHg ), this pressure is related to the height $h$ (in kilometers) above sea level by the function

$$
p(h)=760 e^{-0.145 h}
$$

To the nearest hundredth, find the height of an aircraft if the atmospheric pressure is 400 mmHg .
6. 10 pts . Write as a single logarithm:

$$
3 \log _{2}(x-3)-\log _{2}(2 x-1)-\log _{2}(x+1)
$$

7. 10 pts. each Solve each equation in exact form.
(a) $\log _{6}(x+4)+\log _{6}(x+3)=1$.
(b) $(3 / 5)^{x}=7^{1-x}$.
8. 10 pts. each Iodine-131 is a radioactive isotope that decays according to the function $A(t)=A_{0} e^{-0.087 t}$, where $A_{0}$ is the initial amount present and $A(t)$ is the amount present at time $t$ (in days).
(a) If there are initially 100 grams of iodine-131, how much is left after 11 days to the nearest tenth of a gram?
(b) What is the half-life of iodine- 131 to the nearest hundredth of a day?
9. 10 pts. Convert $140.547^{\circ}$ to degree-minute-second format, rounding to the nearest second.
10. 10 pts. The terminal side of the angle $\theta$ contains the point $(5,-12)$. Find the exact value of each of the six trigonometric functions of $\theta$.
11. 10 pts. Given that $\sin \theta=-2 / 3$ and $\pi<\theta<3 \pi / 2$, find the exact value of each of the remaining trigonometric functions of $\theta$.
12. 10 pts . Find the domain and range of the function $y=-4 \sin (x / 8)+1$.
13. 10 pts . Find the domain and range of the function

$$
y=-3 \sec \left(\frac{3 \pi}{2} x\right)
$$

14. 10 pts. Write the equation of a cosine function having amplitude 4 and period $\pi / 6$.
