1. 10 pts . Find $f(-4)$ and $f(-x)$ for

$$
f(x)=-2 x^{2}+x-3
$$

2. 10 pts. each Find the domain of each function.
(a) $g(x)=\frac{x+5}{4-4 x^{2}}$
(b) $h(t)=\frac{\sqrt{-t-3}}{3 t-15}$
3. 10 pts. each Let

$$
f(x)=1+\frac{1}{2 x} \quad \text { and } \quad g(x)=\frac{1}{x-6} .
$$

(a) Find $(f \cdot g)(x)$ and its domain.
(b) Find $\left(\frac{f}{g}\right)(x)$ and its domain.
4. 5 pts. each Determine algebraically whether the function is even, odd, or neither.
(a) $f(x)=-3 x^{2}-5$
(b) $g(x)=\frac{-x^{3}}{3 x^{2}-9}$
5. 10 pts. A piecewise-defined function f has graph below. Write a definition for f.

6. A wire 10 meters long is to be cut into two pieces. One piece will be shaped as an equilateral triangle, and the other piece will be shaped as a circle.
(a) 10 pts. Express the total area A enclosed by the pieces of wire as a function of the length x of a side of the equilateral triangle.
(b) 5 pts. What is the domain of A ?
7. 10 pts . Find the zeros of

$$
F(x)=2 x^{2}-3 x-1
$$

What are the x-intercepts of the graph of the function?
8. 10 pts . Find the complex zeros of

$$
h(x)=2 x^{2}+2 x+1
$$

9. 10 pts. Solve the inequality $x(x-7)>8$, giving the solution set in interval notation.
10. A farmer has 3000 meters of fencing available to enclose a rectangular field.
(a) 10 pts. Express the area A of the rectangle as a function of x, where x is the length of the rectangle.
(b) 5 pts. For what value of x is the area greatest?
(c) 5 pts. What is the maximum area?
11. 10 pts. Solve the equation $|1-3 t|+7=11$.
12. 10 pts. Solve the inequality $5-|y-1|<-20$.
