Name:

1. $\boxed{\text{10 pts.}}$ Form a polynomial function of degree 5 that has zeros -2 (with multiplicity 2) and 4 (with multiplicity 3).

2. Let
$$f(x) = 2x^3 - 3x^2 - 17x + 30$$
.

- (a) $\boxed{5 \text{ pts.}}$ List the possible rational zeros of f.
- (b) 10 pts. Find all zeros of f using synthetic division. Give exact values.
- (c) 5 pts. Fully factor f(x).
- 3. 10 pts. Find all the zeros of $p(x) = x^3 + 13x^2 + 57x + 85$, including any complex zeros.

4. 10 pts. Find the vertical, horizontal, and oblique asymptotes, if any, of the rational function

$$r(x) = \frac{2x^2 - 5x - 12}{3x^2 - 11x - 4}.$$

5. 10 pts. each Solve each inequality algebraically.

(a)
$$x^3 + 2x^2 - 3x > 0$$
.

(b)
$$\frac{x+2}{x-4} \ge 1$$
.

6. 12 pts. Given that

$$f(x) = \frac{3}{x-1}$$
 and $g(x) = \sqrt[3]{x}$,

find $(f \circ g)(8)$, $(g \circ f)(2)$, $(f \circ f)(-3)$, and $(g \circ g)(-64)$.

7. 6 pts. each Let

$$f(x) = x^2 + 4$$
 and $g(x) = \sqrt{x - 2}$.

- (a) Find $f \circ g$ and its domain.
- (b) Find $g \circ f$ and its domain.
- (c) Find $g \circ g$ and its domain.

8. 10 pts. each Each function is one-to-one. Find its inverse.

(a)
$$f(x) = x^3 + 9$$
.

(b)
$$h(x) = -\frac{2x}{x-1}$$
.