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Polynomial & Rational Functions

4.5 – Rational Functions

A function f is a rational function if there exist polynomial functions p and q, with q
not the zero function, such that

f(x) =
p(x)

q(x)

for all x for which p(x)/q(x) ∈ R. That is, f = p/q. Clearly

Dom(f) = {x ∈ R : q(x) 6= 0}. (1)

Before proceeding with a study of rational functions it will be convenient to establish some
new notation. Given any function f (not necessarily a rational function), to write

f(x)→∞ as x→ c

means that as x approaches the number c the value of f(x) grows without bound in the positive
direction. For instance we have

1

x2
→∞ as x→ 0,

which is to say the closer x gets to 0 the larger 1/x2 gets—and there is no limit to how large a
positive quantity 1/x2 can become!

Definition 4.1. The line x = c is a vertical asymptote of a rational function f if

|f(x)| → ∞ as x→ c.

By way of an example, if f is the function given by

f(x) =
1

(x− 2)2
,

then the vertical line x = 2 is the vertical asymptote of f . See Figure 1.

Theorem 4.2. A rational function f(x) = p(x)/q(x) has vertical asymptote x = c if and only
if p(c) 6= 0 and q(c) = 0.

Recall the statement of the Factor Theorem: if p is a polynomial function, then p(c) = 0 if
and only if x − c is a factor of p(x). Thus the statement of Theorem 4.2 can be rephrased as
follows.
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Figure 1. A vertical asymptote at x = 2

Corollary 4.3. A rational function f(x) = p(x)/q(x) has vertical asymptote x = c if and only
if x− c is only a factor of q(x).

A rational function f = p/q is said to be in reduced form if p(x) and q(x) have no common
factors. To go about finding vertical asymptotes of f = p/q we could fully factor p(x) and q(x),
cancel all common factors a1x + b1,. . . ,akx + bk present, and so render f(x) in reduced form:

f(x) =
p(x)

q(x)
=

p̂(x)(a1x + b1) · · · (akx + bk)

q̂(x)(a1x + b1) · · · (akx + bk)
=

p̂(x)

q̂(x)
. (2)

We now find by Corollary 4.3 that the vertical asymptotes of f are precisely the zeros of the
polynomial function q̂, since p̂ and q̂ have no common factors by construction.

It must be emphasized that the last equality in (2) only applies when x is such that

akx + bk 6= 0

for k = 1, . . . , n. Put another way, for each k = 1, . . . , n we only have

akx + bk
akx + bk

= 1

if x 6= −bk/ak, since otherwise the fraction becomes 0/0, and 0/0 does not equal 1 or any other
number!

Another important point is that even if a rational function f(x) = p(x)/q(x) can be written
in a reduced form p̂(x)/q̂(x), the domain of f is still given by (1). Thus, if q(c) = 0 but q̂(c) 6= 0,
we still do not admit c into the domain of f ! The domain of any rational function must be
found from its original form, not its reduced form.

Example 4.4. Find the domain and vertical asymptotes of

f(x) =
x2 + x− 6

x− 2
,

and then give the graph of f .
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Figure 2. A hole at x = 2.

Solution. We have

Dom(f) = {x ∈ R : x− 2 6= 0} = {x ∈ R : x 6= 2} = (−∞, 2) ∪ (2,∞).

To find any vertical asymptotes, we obtain the reduced form of the fraction:

x2 + x− 6

x− 2
=

(x− 2)(x + 3)

x− 2
= x + 3.

Thus we may define f by

f(x) = x + 3, x 6= 2, (3)

so f(x) = p̂(x)/q̂(x) with p̂(x) = x + 3 and q̂(x) = 1. Since x = c is a vertical asymptotes of f
if and only if q̂(c) = 0, we conclude that f has no vertical asymptotes.

To graph f we may for the most part simply graph the line y = x + 3; however it must be
stressed, as it is in (3), that 2 is still not in the domain of f . As a result there is a “hole” in
the graph of f at the point (2, 5). See Figure 2. �

Definition 4.5. The line y = c is a horizontal asymptote of a rational function f if

f(x)→ c as x→ ±∞.

Example 4.6. Let

f(x) =
x + 2

x2 + 2x− 15
.

(a) Find the domain of f .
(b) Find the intercepts of f .
(c) Find all vertical asymptotes of f .
(d) Find the horizontal or oblique asymptote of f .
(e) Find all points where f intersects its horizontal or oblique asymptote.
(f) Find additional points on the graph of f as needed.
(g) Sketch the graph of f .



4

Solution.
(a) The domain of f is

Dom(f) = {x ∈ R : x2 + 2x− 15 6= 0} = {x ∈ R : (x− 3)(x + 5) 6= 0}
= {x ∈ R : x 6= −5, 3} = (−∞,−5) ∪ (−5, 3) ∪ (3,∞).

(b) The x-intercepts of f are the points (x, f(x)) where f(x) = 0. Now,

f(x) = 0 ⇒ x + 2

x2 + 2x− 15
= 0 ⇒ x + 2 = 0 ⇒ x = −2,

so (−2, 0) is the only x-intercept.
The y-intercept of f is the point (0, f(0)) =

(
0,− 2

15

)
.

(c) We have

f(x) =
x + 2

(x− 3)(x + 5)
,

which is already in reduced form. Thus the vertical asymptotes of f are the lines x = −5 and
x = 3.

(d) Since the degree of the polynomial x2 + 2x− 15 in the denominator of f(x) is greater than
the degree of x + 2 in the numerator, we conclude that f has horizontal asymptote y = 0.

(e) The graph of f intersects the horizontal asymptote y = 0 if there is some x ∈ Dom(f) for
which f(x) = 0. We found just such a point already, namely the x-intercept (−2, 0), which is
only because the horizontal line y = 0 happens to be the x-axis.

(f) The vertical asymptotes partition the plane into three regions:

R1 = {x : x < −5}, R2 = {x : −5 < x < 3}, and R3 = {x : x > 3}.

We will want at least one point that lies on the graph of f in each region.
Calculating

f(−6) =
−6 + 2

(−6)2 + 2(−6)− 15
= −4

9
,

we find that
(
− 6,−4

9

)
is a point on the graph of f in region R1.

We already have points (−2, 0) and
(
0,− 2

15

)
in region R2. However, the point (−2, 0) lies

right on the horizontal asymptote y = 0. The point
(
0,− 2

15

)
lies to the right of this point, so

we should find a point in R2 that lies to the left of (−2, 0). Calculating

f(−4) =
−4 + 2

(−4)2 + 2(−4)− 15
=

2

7
,

we obtain
(
− 4, 2

7

)
as just such a point.

Finally we obtain a point in region R3. Calculating

f(4) =
4 + 2

42 + 2(4)− 15
=

2

3
,
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we have the point
(
4, 2

3

)
.

(g) We sketch the graph of f using the asymptotes and select points as guides. In region R1

we have the point
(
− 6,−4

9

)
, which lies below the horizontal asymptote y = 0 and to the left

of the vertical asymptote x = −5. We know the graph of f cannot cross y = 0 in this region,
so as we move to the left of

(
− 6,−4

9

)
we must have

f(x)→ 0− as x→ −∞.

Also, since the graph of f cannot cross x = −5, as we move to the right of
(
− 6,−4

9

)
we must

have

f(x)→ −∞ as x→ −5−

Moving on to region R2, as we move to the left of (−2, 0) we must have

f(x)→∞ as x→ −5+

since
(
−4, 2

7

)
is above y = 0 and there is no option to cross the horizontal asymptote anywhere

to the left of (−2, 0). As we move to the right of (−2, 0) we must have

f(x)→ −∞ as x→ 3−

since
(
0,− 2

15

)
is below y = 0 and there is no option to cross the horizontal asymptote anywhere

to the right of (−2, 0). (Remember: crossing a vertical asymptote is never an option!)
Finally, in region R3 we have the point

(
4, 2

3

)
, which is above the horizontal asymptote

y = 0 and to the right of the vertical asymptote x = 3. Thus the graph of f is bent upward as
we move to the left of

(
4, 2

3

)
(to avoid crossing x = 3), and bends to avoid crossing y = 0 as we

move to the right of
(
4, 2

3

)
. That is, we have

f(x)→∞ as x→ 3+

x

y

−5 −2 3

2

−2

Figure 3
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and

f(x)→ 0+ as x→∞

See Figure 3. �

Example 4.7. Let

f(x) =
x3 − 4x2

x3 − 5x2 + 2x + 8
.

(a) Find the domain of f .
(b) Find the intercepts of f .
(c) Find all vertical asymptotes of f .
(d) Find the horizontal or oblique asymptote of f .
(e) Find all points where f intersects its horizontal or oblique asymptote.
(f) Find additional points on the graph of f as needed.
(g) Sketch the graph of f .

Solution.
(a) The numerator of g(x) factors as x2(x − 4), and so it would be worthwhile determining
whether x− 4 is also a factor of the denominator. Letting

q(x) = x3 − 5x2 + 2x + 8,

we carry out the divison q(x)÷ (x− 4):

4 1 −5 2 8
4 −4 −8

1 −1 −2 0

The remainder is 0, so q(4) = 0 by the Remainder Theorem, and by the Factor Theorem we
conclude that x− 4 is a factor of q(x). Indeed,

q(x) = (x− 4)(x2 − x− 2) = (x− 4)(x− 2)(x + 1),

and we have

f(x) =
x2(x− 4)

(x− 4)(x− 2)(x + 1)
.

It is now clear that

Dom(f) = {x : x 6= −1, 2, 4} = (−∞,−1) ∪ (−1, 2) ∪ (2, 4) ∪ (4,∞).

(b) The x-intercepts of f are the points (x, f(x)) where f(x) = 0. From f(x) = 0 we have

x2(x− 4)

(x− 4)(x− 2)(x + 1)
= 0 ⇒ x2

(x− 2)(x + 1)
= 0 ⇒ x2 = 0 ⇒ x = 0,

so (0, 0) is the only x-intercept. Since (0, 0) is also a y-intercept of f and a function can never
have more than one y-intercept, we have found all intercepts.
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(c) The vertical asymptotes of f are at precisely the values of x that lead to division by 0 in
the expression f(x) when f(x) is in reduced form. The reduced form for f(x) is

x2

(x− 2)(x + 1)
,

and so the vertical asymptotes of f are x = −1 and x = 2. Since 4 /∈ Dom(f) but x = 4 is not
a vertical asymptote of f , we conclude that there is a hole in the graph of f at the point(

4,
42

(4− 2)(4 + 1)

)
=

(
4, 8

5

)
.

(d) Since

deg(x3 − 4x2) = deg(x3 − 5x2 + 2x + 8) = 3,

and
Lead coefficient of x3 − 4x2

Lead coefficient of x3 − 5x2 + 2x + 8
=

1

1
= 1,

we conclude that y = 1 is a horizontal asymptote for f .

(e) The graph of f intersects the horizontal asymptote y = 1 if there is some x ∈ Dom(f) for
which f(x) = 1. This results in the equation

x2(x− 4)

(x− 4)(x− 2)(x + 1)
= 1,

whence

x2

(x− 2)(x + 1)
= 1 ⇒ x2 = (x− 2)(x + 1) ⇒ x + 2 = 0 ⇒ x = −2.

Thus the graph of f intersects y = 1 at (−2, f(−2)) = (−2, 1).

(f) The vertical asymptotes partition the plane into three regions:

R1 = {x : x < −1}, R2 = {x : −1 < x < 2}, and R3 = {x : x > 2}.

We will want at least one point that lies on the graph of f in each region, and in region R1 in
particular we want points on either side of (−2, 1) where the graph of f intersects the horizontal
asymptote y = 1. Calculating

f(−3) = 9
10
, f

(
−3

2

)
= 9

7
, f(3) = 9

4
,

we obtain the points
(
−3, 9

10

)
,
(
−3

2
, 9
7

)
, and

(
3, 9

4

)
.

(g) We sketch the graph of f using the asymptotes and our few choice points as guides. In
region R1 we have

(
− 3,− 9

10

)
lying below the horizontal asymptote y = 1, so that we must

have

f(x)→ 1− as x→ −∞.



8

x

y

−1 2 3−3 4

2

−2

Figure 4

In contrast we have
(
− 3

2
, 9
7

)
lying above y = 1, so as we move to the right of this point we

must have
f(x)→∞ as x→ −1−

in order to avoid crossing the asymptotes y = 1 and x = −1.
The situation in region R2 is fairly simple: (0, 0) lies on the graph of f , and since there

are no other intercepts for f and the horizontal asymptote (which f does not intersect in R2)
lies above this point, it must be that the graph of f bends downward as we move to the left or
right of (0, 0). In fact we must have

f(x)→ −∞ as x→ −1+ and x→ 2−

to avoid intersecting x = −1 and x = 2.
Finally, in region R3 we have

(
4, 9

4

)
, which is above the horizontal asymptote y = 1 and to

the right of the vertical asymptote x = 2. Thus the graph of f is bent upward as we move to
the left of

(
4, 9

4

)
(to avoid crossing x = 2), and bends to avoid crossing y = 1 as we move to

the right of
(
4, 9

4

)
. That is, we have

f(x)→∞ as x→ 2+

and
f(x)→ 1+ as x→∞

Finally, don’t forget that there is a hole at
(
4, 8

5

)
! See Figure 4. �

Example 4.8. Let

f(x) =
x3 + 2x2 − 3x

x2 − 25
.

(a) Find the domain of f .
(b) Find the intercepts of f .
(c) Find all vertical asymptotes of f .
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(d) Find the horizontal or oblique asymptote of f .
(e) Find all points where f intersects its horizontal or oblique asymptote.
(f) Find additional points on the graph of f as needed.
(g) Sketch the graph of f .

Solution.
(a) We have

Dom(f) = {x : x2 − 25 6= 0} = {x : x 6= ±5} = (−∞,−5) ∪ (−5, 5) ∪ (5,∞)

as the domain for f .

(b) The x-intercepts of f are the points (x, f(x)) where f(x) = 0, from which we get

x3 + 2x2 − 3x

x2 − 25
= 0 ⇒ x3 + 2x2 − 3x = x(x− 1)(x + 3) = 0 ⇒ x = −3, 0, 1.

Thus (−3, 0), (0, 0), and (1, 0) are x-intercepts. Since (0, 0) is also a y-intercept of f and a
function can never have more than one y-intercept, we have found all intercepts.

(c) We have

f(x) =
x(x− 1)(x + 3)

(x− 5)(x + 5)
,

which is already in reduced form and so the vertical asymptotes are x = −5 and x = 5.

(d) Since the degree of the polynomial in the numerator of f(x) is one greater than the degree
of the polynomial in the denominator, there will be an oblique asymptote. Employing long
division, we find that

f(x) = (x3 + 2x2 − 3x)÷ (x2 − 25) = x + 2 +
22x + 50

x2 − 25
, (4)

and so the oblique asymptote is the line y = x + 2.

(e) The graph of f intersects the oblique asymptote y = x + 2 if there is some x ∈ Dom(f) for
which f(x) = x + 2. Using the expression for f(x) given in (4), we obtain the equation

x + 2 +
22x + 50

x2 − 25
= x + 2,

whence
22x + 50

x2 − 25
= 0 ⇒ 22x + 50 = 0 ⇒ x = −25

11
.

Thus the graph of f intersects y = x + 2 at
(
− 25

11
,−25

11
+ 2

)
=

(
− 25

11
,− 3

11

)
.

(f) The vertical asymptotes partition the plane into three regions:

R1 = {x : x < −5}, R2 = {x : −5 < x < 5}, and R3 = {x : x > 5}.

We have plenty of points that lie on the graph of f in region R2, so it remains to find at least
one point in each of R1 and R3. In R1 we have

(
− 7,−28

3

)
, and in R3 we have

(
7, 35

2

)
.
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(g) Using the points and asymptotes we have in hand, we finally sketch the graph of f . See
Figure 5. �


