1. 10 pts. Solve $y=\tan (2 x-1)$ for $x \in\left(\frac{1}{2}-\frac{\pi}{4}, \frac{1}{2}+\frac{\pi}{4}\right)$.
2. 10 pts . Radio direction finders are placed at points A and B, which are 7.82 km apart on an eastwest line, with A west of B. From A the bearing of a certain radio transmitter is 52.7°, and from B the bearing is 291.3°. Find the distance the transmitter is from A.
3. 10 pts. Solve the triangle $A B C$, given $A=61.7^{\circ}, a=78.9 \mathrm{~m}$, and $b=86.4 \mathrm{~m}$.
4. 10 pts . A parallelogram has sides of length 25.9 cm and 32.5 cm . The longer diagonal has length 57.8 cm . Find the measure of the angle opposite the longer diagonal.
5. 10 pts. Write $6 \operatorname{cis} 135^{\circ}$ in rectangular form.
6. 10 pts. Write $\sqrt{3}-i$ in trigonometric (polar) form $r(\cos \theta+i \sin \theta)$, with $\theta \in\left[0^{\circ}, 360^{\circ}\right)$.
7. 10 pts . Write $2+7 i$ in trigonometric form, expressing angles in degrees to two decimal places.
8. 10 pts. Find the product $\left(\sqrt{6} \operatorname{cis} 120^{\circ}\right)\left[\sqrt{6} \operatorname{cis}\left(-30^{\circ}\right)\right]$. Write the answer in rectangular form.
9. 10 pts . Find the quotient $\frac{3 \operatorname{cis} 305^{\circ}}{9 \operatorname{cis} 65^{\circ}}$. Write the answer in rectangular form.
10. 10 pts . Find the power $(-1+i)^{7}$. Write the answer in rectangular form.
11. 10 pts. Find all complex number solutions to the equation $z^{3}+i=0$. Write the answer in trigonometric form.

Trigonometric Identities

$\cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta$
$\sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta$
$\tan (\alpha \pm \beta)=\frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$.
$\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$.
$\sin 2 \theta=2 \sin \theta \cos \theta$.
$\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$.
$\cos \frac{\theta}{2}= \pm \sqrt{\frac{1+\cos \theta}{2}}$.
$\sin \frac{\theta}{2}= \pm \sqrt{\frac{1-\cos \theta}{2}}$.
$\tan \frac{\theta}{2}= \pm \sqrt{\frac{1-\cos \theta}{1+\cos \theta}}=\frac{\sin \theta}{1+\cos \theta}=\frac{1-\cos \theta}{\sin \theta}$.
$\cos \left(90^{\circ}-\theta\right)=\sin \theta$
$\sin \left(90^{\circ}-\theta\right)=\cos \theta$
$\tan \left(90^{\circ}-\theta\right)=\cot \theta$

