MATH 122 EXAM #3 KEY (SPRING 2024)

1 $\sin\theta=y/r=-\frac{4}{5}$, so we let y=-4 and r=5. Now, $\cos\theta<0$ implies θ is in QII or QIII, where x<0, and so from $x^2+y^2=r^2$ comes $x=-\sqrt{r^2-y^2}=-\sqrt{9}=-3$. Finally: $\cos\theta=-\frac{3}{5}$, $\tan\theta=\frac{4}{3}$, $\csc\theta=-\frac{5}{4}$, $\sec\theta=-\frac{5}{3}$, $\cot\theta=\frac{3}{4}$.

2 There are different ways to do this. Using a couple Pythagorean identities,

$$\frac{\sec^{2}\theta - 1}{\csc^{2}\theta - 1} = \frac{(1 + \tan^{2}\theta) - 1}{(1 + \cot^{2}\theta) - 1} = \frac{\tan^{2}\theta}{\cot^{2}\theta} = \frac{\sin^{2}\theta/\cos^{2}\theta}{\cos^{2}\theta/\sin^{2}\theta} = \frac{\sin^{4}\theta}{\cos^{4}\theta}$$
$$= \frac{(1 - \cos^{2}\theta)^{2}}{\cos^{4}\theta} = \frac{1 - 2\cos^{2}\theta + \cos^{4}\theta}{\cos^{4}\theta} = \sec^{4}\theta - 2\sec^{2}\theta + 1.$$

3 Again with a Pythagorean identity:

$$\frac{\sin^2 \theta}{\cos \theta} = \frac{1 - \cos^2 \theta}{\cos \theta} = \frac{1}{\cos \theta} - \cos \theta = \sec \theta - \cos \theta.$$

4 $\sin s = y/r = \frac{2}{3}$, so let y = 2 and r = 3. Then, with s in QII implying x < 0, we have $x = -\sqrt{r^2 - y^2} = -\sqrt{5}$, and so $\cos s = -\frac{\sqrt{5}}{3}$.

Next, $\sin t = y/r = -\frac{1}{3}$, so let y = -1 and r = 3. Then, with t in QIV implying x > 0, we have $x = +\sqrt{r^2 - y^2} = 2\sqrt{2}$, and so $\cos t = \frac{2\sqrt{2}}{3}$. Finally,

$$\cos(s+t) = \cos s \cos t - \sin s \sin t = \left(-\frac{\sqrt{5}}{3}\right) \left(\frac{2\sqrt{2}}{3}\right) - \left(\frac{2}{3}\right) \left(-\frac{1}{3}\right) = \frac{2 - 2\sqrt{10}}{9}.$$

5 With a half-angle identity,

$$\tan 15^\circ = \frac{1 - \cos 30^\circ}{\sin 30^\circ} = \frac{1 - \sqrt{3}/2}{1/2} = 2 - \sqrt{3}.$$

6 Working with the left-hand side (LHS), we have

$$LHS = \frac{\cos \alpha \cos \beta + \sin \alpha \sin \beta}{\cos \alpha \sin \beta} = \frac{\cos \beta}{\sin \beta} + \frac{\sin \alpha}{\cos \alpha} = \cot \beta + \tan \alpha = \tan \alpha + \cot \beta.$$

7 $\sin \theta = y/r = -\frac{\sqrt{5}}{7}$, so let $y = -\sqrt{5}$ and r = 7. We have x > 0 since $\cos \theta > 0$, so $x = +\sqrt{r^2 - y^2} = \sqrt{44} = 2\sqrt{11}$. Thus $\cos \theta = \frac{2\sqrt{11}}{7}$, so that

$$\sin 2\theta = 2\sin \theta\cos \theta = 2\left(-\frac{\sqrt{5}}{7}\right)\left(\frac{2\sqrt{11}}{7}\right) = -\frac{4\sqrt{55}}{49}$$
 and $\cos 2\theta = \cos^2 \theta - \sin^2 \theta = \frac{39}{49}$.

8 Using identities, we can get the expression written entirely in terms of $\cos x$:

$$\cos 3x = \cos(2x + x)$$

$$= \cos 2x \cos x - \sin 2x \sin x$$

$$= (\cos^2 x - \sin^2 x) \cos x - 2\sin^2 x \cos x$$

$$= (2\cos^2 x - 1)\cos x - 2(1 - \cos^2 x)\cos x$$

$$= 4\cos^3 x - 3\cos x$$

9 Starting with a reciprocal identity,

$$\cot^{2}(u/2) = \frac{1}{\tan^{2}(u/2)} = \frac{1}{\left(\frac{\sin u}{1 + \cos u}\right)^{2}} = \frac{(1 + \cos u)^{2}}{\sin^{2} u}.$$

10 Let $\theta = \tan^{-1}(-2)$, so $\tan \theta = -2$ for $\theta \in (-\pi/2, \pi/2)$. Thus the terminal side of θ may be construed as containing the point (x, y) = (1, -2), with $r = \sqrt{1^2 + 2^2} = \sqrt{5}$. Now,

$$\cos(\tan^{-1}(-2)) = \cos\theta = \frac{x}{r} = \frac{1}{\sqrt{5}}.$$

Factor: $(2\cos\theta - \sqrt{3})\cos\theta = 0$, so $\cos\theta = 0$ or $\cos\theta = \sqrt{3}/2$. From $\cos\theta = 0$ comes $\theta = \frac{\pi}{2}, \frac{3\pi}{2}$, and from $\cos\theta = \sqrt{3}/2$ comes $\theta = \frac{\pi}{6}, \frac{11\pi}{6}$. Solution set: $\{\frac{\pi}{2}, \frac{3\pi}{2}, \frac{\pi}{6}, \frac{11\pi}{6}\}$.

Write $\sin \theta = 2 \sin \theta \cos \theta$, so $(2 \cos \theta - 1) \sin \theta = 0$, and either $\sin \theta = 0$ or $\cos \theta = \frac{1}{2}$. Solution set: $\{0, \pi, \frac{\pi}{3}, \frac{5\pi}{3}\}$.