Math 122 Exam \#2 Key (Spring 2024)

$1\left(-\frac{7 \pi}{20}\right)\left(\frac{180^{\circ}}{\pi}\right)=-63^{\circ}$.

2 Convert to decimal degree format first: $122^{\circ} 37^{\prime}=122^{\circ}+(37 / 60)^{\circ}=122.6167^{\circ}$. Now convert this to radians:

$$
\left(122.6167^{\circ}\right)\left(\frac{\pi}{180^{\circ}}\right)=2.140
$$

3 First get decimal degree format: $9.837\left(180^{\circ} / \pi\right)=563.619^{\circ}$. Now convert to degree-minute format:

$$
563.619^{\circ}=563^{\circ}+\left(0.619^{\circ}\right)\left(\frac{60^{\prime}}{1^{\circ}}\right)=563^{\circ} 37^{\prime}
$$

$4 \tan (5 \pi / 6)=-\frac{1}{\sqrt{3}}$ and $\csc (-13 \pi / 3)=\csc (-\pi / 3)=-\frac{2}{\sqrt{3}}$.

5 Angle θ must be in radians: $\theta=\left(135^{\circ}\right)\left(\pi / 180^{\circ}\right)=3 \pi / 4$. We have

$$
s=r \theta=(71.9 \mathrm{~cm})\left(\frac{3 \pi}{4}\right)=169 \mathrm{~cm} .
$$

6 We first find the circumferential distance s_{1} that the smaller gear with radius $r_{1}=4.80 \mathrm{~cm}$ turns, with the angle of rotation θ_{1} in radians:

$$
s_{1}=r_{1} \theta_{1}=(4.80 \mathrm{~cm})\left(438^{\circ}\right)\left(\frac{\pi}{180^{\circ}}\right)=36.69 \mathrm{~cm} .
$$

Next we find the angle of rotation θ_{2} (in degrees) of the larger gear with radius $r_{2}=11.1 \mathrm{~cm}$, given it turns a circumferential distance of $s_{2}=s_{1}=36.69 \mathrm{~cm}$.

$$
\theta_{2}=\left(\frac{s_{2}}{r_{2}}\right)\left(\frac{180^{\circ}}{\pi}\right)=\left(\frac{36.69 \mathrm{~cm}}{11.1 \mathrm{~cm}}\right)\left(\frac{180^{\circ}}{\pi}\right)=189^{\circ}
$$

7 From $A=\frac{1}{2} r^{2} \theta$ we get

$$
\theta=\frac{2 A}{r^{2}}=\frac{2\left(24 \mathrm{~cm}^{2}\right)}{(10 \mathrm{~cm})^{2}}=0.48
$$

8 Amplitude is 3, period is 12π.

9 Amplitude is 2, period is 12π.

10 The dashed graph is that of $y=2 \sin (x / 6)$.

11 Vertical translation: 7. Amplitude: $\frac{3}{4}$. Period: 16π. Phase shift: -8π.

