$$\mathbf{1} \quad \left(-\frac{7\pi}{20}\right) \left(\frac{180^\circ}{\pi}\right) = -63^\circ.$$

2 Convert to decimal degree format first: $122^{\circ}37' = 122^{\circ} + (37/60)^{\circ} = 122.6167^{\circ}$. Now convert this to radians:

$$(122.6167^{\circ})\left(\frac{\pi}{180^{\circ}}\right) = 2.140$$

3 First get decimal degree format: $9.837(180^{\circ}/\pi) = 563.619^{\circ}$. Now convert to degree-minute format:

$$563.619^{\circ} = 563^{\circ} + (0.619^{\circ})\left(\frac{60'}{1^{\circ}}\right) = 563^{\circ}37'.$$

4
$$\tan(5\pi/6) = -\frac{1}{\sqrt{3}}$$
 and $\csc(-13\pi/3) = \csc(-\pi/3) = -\frac{2}{\sqrt{3}}$.

5 Angle θ must be in radians: $\theta = (135^{\circ})(\pi/180^{\circ}) = 3\pi/4$. We have

$$s = r\theta = (71.9 \text{ cm}) \left(\frac{3\pi}{4}\right) = 169 \text{ cm}.$$

6 We first find the circumferential distance s_1 that the smaller gear with radius $r_1 = 4.80$ cm turns, with the angle of rotation θ_1 in radians:

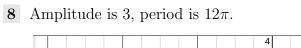
$$s_1 = r_1 \theta_1 = (4.80 \text{ cm})(438^\circ) \left(\frac{\pi}{180^\circ}\right) = 36.69 \text{ cm}.$$

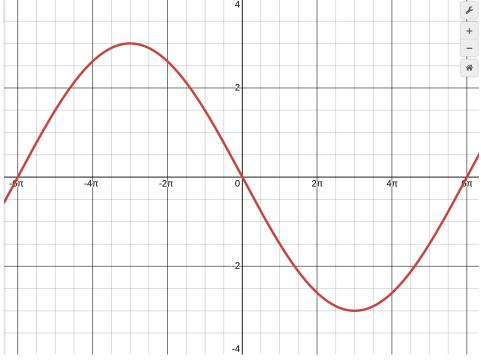
Next we find the angle of rotation θ_2 (in degrees) of the larger gear with radius $r_2 = 11.1$ cm, given it turns a circumferential distance of $s_2 = s_1 = 36.69$ cm.

$$\theta_2 = \left(\frac{s_2}{r_2}\right) \left(\frac{180^\circ}{\pi}\right) = \left(\frac{36.69 \text{ cm}}{11.1 \text{ cm}}\right) \left(\frac{180^\circ}{\pi}\right) = 189^\circ$$

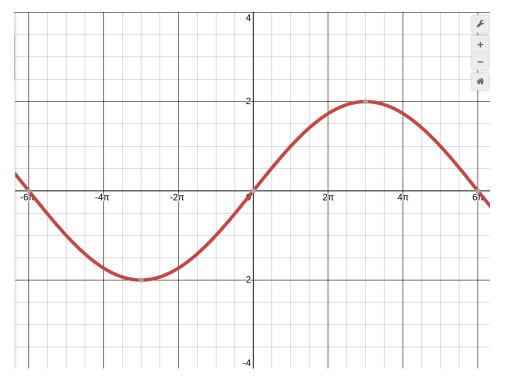
7 From $A = \frac{1}{2}r^2\theta$ we get

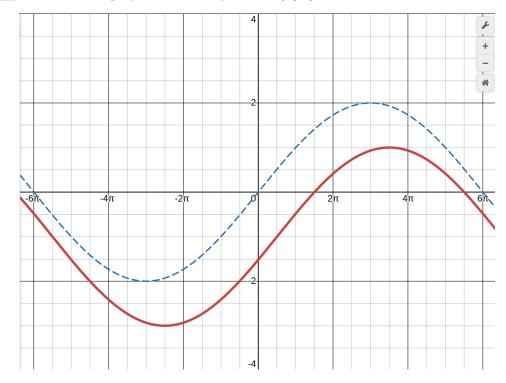
$$\theta = \frac{2A}{r^2} = \frac{2(24 \text{ cm}^2)}{(10 \text{ cm})^2} = 0.48.$$





9 Amplitude is 2, period is 12π .





10 The dashed graph is that of $y = 2\sin(x/6)$.

11 Vertical translation: 7. Amplitude: $\frac{3}{4}$. Period: 16π . Phase shift: -8π .