1 So $(6 x-4)+(8 x-12)=180$, giving $14 x=196$, and thus $x=14$. Measures of the angles are 80° and 100°.
$234^{\circ} 51^{\prime} 35^{\prime \prime}=34^{\circ}+\left(\frac{51}{60}\right)^{\circ}+\left(\frac{35}{3600}\right)^{\circ}=\left(34+\frac{51}{60}+\frac{35}{3600}\right)^{\circ}=34.8597^{\circ} \approx 34.860^{\circ}$.
3 Answer is $-84^{\circ} 42^{\prime} 50^{\prime \prime}$, obtained from

$$
\begin{aligned}
84.7138^{\circ} & =84^{\circ}+\left(0.7138^{\circ}\right)\left(\frac{60^{\prime}}{1^{\circ}}\right)=84^{\circ}+42.828^{\prime}=84^{\circ} 42^{\prime}+\left(0.828^{\prime}\right)\left(\frac{60^{\prime \prime}}{1^{\prime}}\right) \\
& =84^{\circ} 42^{\prime}+49.68^{\prime \prime}=84^{\circ} 42^{\prime} 49.68^{\prime \prime} \approx 84^{\circ} 42^{\prime} 50^{\prime \prime}
\end{aligned}
$$

4 The third angle has measure
$180^{\circ}-\left(19^{\circ} 34^{\prime} 23^{\prime \prime}+41^{\circ} 5^{\prime} 11^{\prime \prime}\right)=180^{\circ}-60^{\circ} 39^{\prime} 34^{\prime \prime}=179^{\circ} 59^{\prime} 60^{\prime \prime}-60^{\circ} 39^{\prime} 34^{\prime \prime}=119^{\circ} 20^{\prime} 26^{\prime \prime}$.

5 Here $r=\sqrt{x^{2}+y^{2}}=\sqrt{(-24)^{2}+(-7)^{2}}=25$, so:

$$
\sin \theta=-\frac{7}{25}, \cos \theta=-\frac{24}{25}, \tan \theta=\frac{7}{24}, \quad \cot \theta=\frac{24}{7}, \sec \theta=-\frac{25}{24}, \quad \csc \theta=-\frac{25}{7} .
$$

$6 \csc \theta=-2$ implies $\sin \theta=-\frac{1}{2}$, and $\cot \theta=\cos \theta / \sin \theta$. It remains to find $\cos \theta$. Since cosine is negative in quadrant III, from $\sin ^{2} \theta+\cos ^{2} \theta=1$ comes $\cos \theta=-\sqrt{1-\sin ^{2} \theta}=-\sqrt{\frac{3}{4}}=-\frac{\sqrt{3}}{2}$. Finally,

$$
\cot \theta=\frac{\cos \theta}{\sin \theta}=\frac{-\sqrt{3} / 2}{-1 / 2}=\sqrt{3} .
$$

$7 \cos \theta>0$ in quadrants I and IV, while $\tan \theta<0$ in quadrants II and IV. So we must be in quadrant IV.

Now, $x / r=\cos \theta=\sqrt{5} / 8$, so we can let $x=\sqrt{5}$ and $r=8$. This puts us on a circle of radius 8 , which has equation $x^{2}+y^{2}=64$, and hence $y=-\sqrt{64-x^{2}}=-\sqrt{64-5}=-\sqrt{59}$ (note that $y<0$ in quadrant IV). Now,

$$
\sin \theta=-\frac{\sqrt{59}}{8}, \quad \cos \theta=\frac{\sqrt{5}}{8}, \quad \tan \theta=-\frac{\sqrt{59}}{\sqrt{5}}, \quad \cot \theta=-\frac{\sqrt{5}}{\sqrt{59}}, \quad \sec \theta=\frac{8}{\sqrt{5}}, \quad \csc \theta=-\frac{8}{\sqrt{59}} .
$$

8 We have $\left(5 \theta+2^{\circ}\right)+\left(2 \theta+4^{\circ}\right)=90^{\circ}$, or $\theta=12^{\circ}$.
9 Using the 30-60 and 45-45 triangles, along with the Pythagorean theorem, we have

$$
\cos 60^{\circ}=\frac{a}{24} \Rightarrow a=24 \cos 60^{\circ}=24 \cdot \frac{1}{2}=12
$$

$$
\begin{gathered}
\sin 60^{\circ}=\frac{b}{24} \Rightarrow b=24 \sin 60^{\circ}=24 \cdot \frac{\sqrt{3}}{2}=12 \sqrt{3}, \\
c=\sqrt{b^{2}+d^{2}}=12 \sqrt{6}, \text { and } d=b=12 \sqrt{3}
\end{gathered}
$$

10240° and 300°

11 With a reciprocal identity, $\cos \theta=0.861604813$, and so $\theta=30.5027^{\circ}$.
$12 A=180^{\circ}-B-C=38.3^{\circ}$,

$$
\begin{aligned}
& \tan A=\frac{a}{b} \Rightarrow b=\frac{a}{\tan A}=\frac{28.1}{\tan 38.3^{\circ}}=35.6 \mathrm{~m} \\
& \cos B=\frac{a}{c} \Rightarrow c=\frac{a}{\cos B}=\frac{28.1}{\cos 51.7^{\circ}}=45.3 \mathrm{~m}
\end{aligned}
$$

13 Let d be the distance. We have $\tan 32.5^{\circ}=\frac{252}{d}$, or $d=396 \mathrm{~m}$.

14 Drawing a line segment between the ships and from each ship to the port forms a right triangle. The first ship travels 42.5 km , the second 55 km . By the Pythagorean theorem the distance between the ships is $d=\sqrt{42.5^{2}+55^{2}}=70 \mathrm{~km}$.

