
7.1 - Oblique Triangles & the Law of Sines

Law of Sines

sinA

a
=

sinB

b
=

sinC

c

Solve the triangle:

sinA

a
We know A & a, so we use the Law of Sines with            in the
equation.  For instance:

We round to 2 significant digits here:

Given two angles and a side (the side-angle-angle or SAA case),
or given two sides and an angle opposite one of the sides (the 
angle-side-angle or ASA case), the Law of Sines must be used to
solve the triangle.



       Standing on one bank of a river flowing north, Mark notes a
tree on the opposite bank at a bearing of 115.45 .  Lisa is on the
same bank as Mark, but 428.3 m away.  She measures the tree's
bearing as 45.47 .  The two banks are parallel.  What's the distance
across the river?

Recall:  "bearing" as given here is defined to be the angle
clockwise from due north.  See section 2.5.



The right triangle shown at
right results.  The width of
the river is d, where



7.2 - Ambiguous Case of the Law of Sines

The case when two sides of a triangle and an angle opposite one
of the sides is the SSA (side-side-angle) case, also known as the
ambiguous case.  

This terminology is something of a misnomer.  Better said:  the
SSA case is the only case wherein there is the potential for the 
given information to yield two possible triangles.  But often
the SSA case yields no triangle, or precisely one possible triangle
     not "ambiguous" at all.  Mathematicians are not renowned for 
their mastery of the language.

Below are depicted two triangles that have sides of length of 
length a and b, and an angle A opposite the side of length a.



Solve the triangle     ABC given that B = 113.72 , a = 189.6,
and b = 243.8.

With the information at hand, we must first find angle A:

The interior angles of a 

triangle must add up to exactly 180 .  So A = 45.397   is the 
only possible solution, and we will get precisely one triangle
out of our data.

We have carried extra digits throughout our work to control
roundoff error, but now it's time to give our final results with
the proper significant digits observed:



       Solve the triangle     ABC given that B = 48.2 , a = 890, and
       b = 697.

With the information at hand, we must first find angle A:



Rounding to the proper number of significant digits (3 digits
in this case), we have:



7.3 - The Law of Cosines

Law of Cosines

a2 = b2 + c2 − 2bc cosA

b2 = a2 + c2 − 2ac cosB

c2 = a2 + b2 − 2ab cosC

Given a, b, c (the side-side-side or SSS case), or given c, A, b
or a, C, b or a, B, c (the side-angle-side or SAS case), we must
use the Law of Cosines to solve the triangle.  The Law of Sines
will lead nowhere.

We could start with any of the three equations constituting the
Law of Cosines.  We'll pick the first one in order to find A:

We could now use the 2nd equation in the Law of Cosines to find
B, or we could use the Law of Sines instead.  Using the Law of
Sines will be slightly less computationally intensive.



Keeping 3 significant digits, we have:

Note:  we do not cover Heron's Area Formula.

44    An airplane flies 280 km from point X at a bearing of 125 ,
and then turns and flies at a bearing of 230  for 150 km.  How 
far is the plane from point X?

We have the triangle above.  The angle 0 is supplementary to 
125 , since they are interior angles on the same side of a trans-
versal (see page 129 of the textbook).  Thus





8.1 - Complex Numbers

Definition    Let a, b, c, d be real numbers.  Then:

1)  (a+bi) + (c+di) = (a+c) + (b+d)i

2)  (a+bi) - (c+di) = (a-c) + (b-d)i

3)  (a+bi)(c+di) = (ac-bd) + (ad+bc)i





8.2 - Polar Form of Complex Numbers

Recall:  the standard form for a complex number is a+bi, where
a and b are real numbers.  Thus a complex number is specified
with two numbers:  a real part a, and an imaginary part b.  In this
way a complex number a+bi corresponds to a point (a,b) in the
usual rectangular coordinate system.  In fact, the complex number
system is seen to be a two-dimensional number system: analogous
to the real number line there is the complex number plane.  To 
locate complex numbers in this plane it is necessary to have two
coordinate axes:  a horizontal axis called the real axis, and vertical
axis called the imaginary axis, each axis being a copy of the real
number line.  This is precisely the same setup as the rectangular
system, only a point (a,b) is interpreted to represent the complex
number a+bi. 

Complex Number Plane

Note that 0 = 0i = 0+0i, so 0 is the only number that is both real
and imaginary.  Generally we have 0+bi = bi and a+0i = a.



The standard form a+bi of a complex number is also known as
the rectangular form.

Suppose a complex number with rectangular form x+yi lies in
the complex plane a distance r from the origin, on the terminal
side of an angle 0 having initial side the positive real axis:

r(cos θ + i sin θ)We call                              the polar form of the complex number
x+yi, with r the modulus (or absolute value) of x+yi, and 0 the
argument of x+yi.  In this section we always choose 0 to be a
value in the interval [0 ,360 ) or [0,2  ).



From the figure on the previous page we can see that

which we use to convert a complex number from rectangular to
polar form...

tan θ =
y

x

which we recognize

as a 30-60 triangle with 0 = 30 .





8.3 - The Product & Quotient Theorems

Recalling the identities

Product Theorem (r1 cis θ1)(r2 cis θ2) = r1r2 cis(θ1 + θ2)

(r1 cis θ1)(r2 cis θ2)

= [r1(cos θ1 + i sin θ1)][r2(cos θ2 + i sin θ2)]

= r1r2(cos θ1 + i sin θ1)(cos θ2 + i sin θ2)

= r1r2(cos θ1 cos θ2 + i cos θ1 sin θ2 + i sin θ1 cos θ2 + i2 sin θ1 sin θ2)

= r1r2[(cos θ1 cos θ2 − sin θ1 sin θ2) + i(cos θ1 sin θ2 + sin θ1 cos θ2)]

= r1r2[cos(θ1 + θ2) + i sin(θ1 + θ2)]

= r1r2 cis(θ1 + θ2)

Proof:

cosα cosβ ∓ sinα sinβ = cos(α± β)

cosα sinβ ± sinα cosβ = sin(α± β)

we prove the following theorems.

Quotient Theorem r1 cis θ1
r2 cis θ2

=
r1
r2

cis(θ1 − θ2)

We just need to show that

Proof:



Find the product, and write the answer in rectangular form:

Both are fine forms

Use a calculator to find the following, writing the answer
in rectangular form, writing the real and imaginary parts
to four decimal places:



Find the quotient, and write the answer in rectangular form:

In general, the conjugate of a+ib is a-ib (and the conjugate of a-ib 
is a+ib).  Multiplying a complex number by its conjugate always results
in a real number:  For real numbers a & b...

The easiest approach is to multiply the numerator and denominator
by the conjugate of the denominator:



8.4 - De Moivre's Theorem; Powers & Roots
         of Complex Numbers

Pronunciation:  De Moivre = "Deh MWAH-veh," approximately.

De Moivre's Theorem     For any real number t,

Use De Moivre's Theorem to find the 4th power of the polar
form, and convert back to rectangular form.

(r cis θ)t = rtcis tθ



Definition     Let n be a positive integer.  The complex number
a+bi is an nth root of x+yi if (a+ bi)n = x+ yi

n

r(cos θ + i sin θ)

n

  th Root Theorem     Let n be a positive integer, r>0, and 0 be
in degrees.   Then the complex number                          has 
precisely n distinct    th roots of the form

n
√
r(cosα+ i sinα)

where

α =
θ + 360◦ · k

n
for k = 0, 1, 2, . . . , n− 1.

If 0 is in radians, then

α =
θ + 2πk

n
for k = 0, 1, 2, . . . , n− 1.

When using the theorem to find square roots we have n=2, and
when finding cube roots we have n=3.

In the previous example we found that 

nBy the   th Root Theorem there are precisely three cube roots
of the form

2− 2i
√
3     Find all cube roots of                 in polar form, and also in

rectangular form to four decimal places.



The cube roots are therefore

z4 + 16 = 0,

To use the nth Root Theorem we need -16 in polar form.

The 4th roots of -16 are given by

where

Find all solutions to the equation                     both real
and complex.  Write answers in rectangular form.



So we find that

The 4th roots are therefore

The solution set to the equation is:
n√

2 + i
√
2, −

√
2 + i

√
2, −

√
2− i

√
2,

√
2− i

√
2
o

Note:  In the assignment for section 8.4, exercises #19 - 30, 
disregard part (b).  Just do part (a).

The 4th roots of -16:


