Math 121 Summer 2024 Exam 2

NAME:

- 1. 5 pts. each State the negation of the quantified statement.
 - (a) For every irrational number x, there exists a rational number y such that xy = 0.
 - (b) There exists an odd integer m such that for every integer n, mn is odd.
- 2. 5 pts. each Consider the following quantified statement: There exist an even integer p and an odd integer q such that $(p+8)^2 + (q-5)^2 = 0$.
 - (a) Express the statement in symbols.
 - (b) Express the negation of the statement in symbols.
 - (c) Express the negation of the statement in words.
- 3. 10 pts. Let $a, b \in \mathbb{Z}$. Prove directly that if a and b are odd, then ab + a + b is odd.
- 4. 10 pts. Let k, m and n be integers. Prove by contraposition that if $2k + 3m \ge 12n + 1$, then $k \ge 3n + 1$ or $m \ge 2n + 1$.
- 5. 10 pts. Let A, B and C be sets. Use a proof by cases to prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- 6. 5 pts. each Prove or disprove each statement.
 - (a) Every positive integer can be expressed as the sum of two positive integers.
 - (b) For any sets A, B, and C, if $A \cup B = A \cup C$ then B = C.
- 7. 10 pts. Prove there exist integers m and n of the same parity such that $(m-2)^2 (n-3)^2 = 1$.
- 8. 10 pts. Prove by contradiction that if u and v are positive real numbers, then $\sqrt{u} + \sqrt{v} \neq \sqrt{u+v}$.
- 9. 10 pts. Prove by induction: $2+5+8+\cdots+(3n-1)=n(3n+1)/2$ for every positive integer n.
- 10. 10 pts. Prove by induction: $n^2 > n+1$ for every integer $n \ge 2$.
- 11. A sequence is defined recursively by $a_1 = 3$ and $a_n = 2a_{n-1} + 1$ for $n \ge 2$.
 - (a) 5 pts. Determine a_2 , a_3 , a_4 and a_5 .
 - (b) 10 pts. Based on the values of the first several terms of the sequence, guess at a formula for a_n for all $n \in \mathbb{N}$, and use induction to prove that your guess is correct.