1. 5 pts. each State the negation of the quantified statement.
(a) For every irrational number x, there exists a rational number y such that $x y=0$.
(b) There exists an odd integer m such that for every integer $n, m n$ is odd.
2. 5 pts. each Consider the following quantified statement: There exist an even integer p and an odd integer q such that $(p+8)^{2}+(q-5)^{2}=0$.
(a) Express the statement in symbols.
(b) Express the negation of the statement in symbols.
(c) Express the negation of the statement in words.
3. 10 pts. Let $a, b \in \mathbb{Z}$. Prove directly that if a and b are odd, then $a b+a+b$ is odd.
4. 10 pts . Let k, m and n be integers. Prove by contraposition that if $2 k+3 m \geq 12 n+1$, then $k \geq 3 n+1$ or $m \geq 2 n+1$.
5. 10 pts. Let A, B and C be sets. Use a proof by cases to prove that $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.
6. 5 pts. each Prove or disprove each statement.
(a) Every positive integer can be expressed as the sum of two positive integers.
(b) For any sets A, B, and C, if $A \cup B=A \cup C$ then $B=C$.
7. 10 pts. Prove there exist integers m and n of the same parity such that $(m-2)^{2}-(n-3)^{2}=1$.
8. 10 pts. Prove by contradiction that if u and v are positive real numbers, then $\sqrt{u}+\sqrt{v} \neq \sqrt{u+v}$.
9. 10 pts. Prove by induction: $2+5+8+\cdots+(3 n-1)=n(3 n+1) / 2$ for every positive integer n.
10. 10 pts . Prove by induction: $n^{2}>n+1$ for every integer $n \geq 2$.
11. A sequence is defined recursively by $a_{1}=3$ and $a_{n}=2 a_{n-1}+1$ for $n \geq 2$.
(a) 5 pts. Determine a_{2}, a_{3}, a_{4} and a_{5}.
(b) 10 pts. Based on the values of the first several terms of the sequence, guess at a formula for a_{n} for all $n \in \mathbb{N}$, and use induction to prove that your guess is correct.
