1. 10 pts . For statements P and Q, use a truth table to verify that $\neg(P \vee Q) \not \equiv(\neg P) \vee(\neg Q)$.
2. 10 pts. Let P, Q, and R be statements. Use a truth table to determine whether

$$
P \wedge(Q \oplus R) \equiv(P \wedge Q) \oplus(P \wedge R)
$$

3. 10 pts . For a real number x, consider the statements $P: x \leq 2$ and $Q: x>-4$. Use De Morgan's Laws to state $\neg(P \vee Q)$ and $\neg(P \wedge Q)$.
4. 10 pts. State in words the converse and the contrapositive of the implication $P \Rightarrow Q$, where

$$
P: 99 \text { is even. } \quad Q: 52 \text { is even. }
$$

State the truth value of each of the three implications.
5. 10 pts . Construct the truth table for $(P \Rightarrow Q) \Rightarrow(\neg P)$.
6. 5 pts. each Express each of the following implications as an "if-then" sentence.
(a) I will go to the clown circus only if I have the time.
(b) Getting a tax refund is sufficient to make me happy.
7. 5 pts. each For integers a, b, c consider the biconditional "At least two of a, b and c are odd if and only if at least two of $a b, a c$, and $b c$ are odd.
(a) Give an example of integers a, b, c for which the biconditional is true.
(b) Give an example of integers a, b, c for which the biconditional is false.
8. 10 pts. Determine whether $(P \wedge(\neg Q)) \Rightarrow(P \vee Q)$ is a tautology, contradiction, or neither.
9. 10 pts. Which of the following sets are equal?

$$
\begin{gathered}
A=\{n \in \mathbb{Z}:|n|<2\}, \quad B=\left\{n \in \mathbb{Z}: n^{2}<4\right\}, \quad C=\left\{n \in \mathbb{Z}: n^{3}-n=0\right\}, \\
D=\{-1,0,1\}, \quad E=\left\{n \in \mathbb{Z}: n^{2} \leq n\right\} .
\end{gathered}
$$

10. 5 pts. each Determine each set, given that

$$
\begin{aligned}
U & =\{0,1,2,3,4,5,6,7,8\} \\
A & =\{1,2,4,5,8\} \\
B & =\{3,4,7\}
\end{aligned}
$$

(a) $\overline{A \cup B}$
(b) $\bar{A} \cup(A \cap B)$
(c) $A-\bar{B}$
11. 10 pts . Use a distributive property of logic to verify that

$$
A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
$$

12. 10 pts . For $A=\{1,2\}$ and $B=\{\varnothing\}$, determine $\mathcal{P}(A) \times \mathcal{P}(B)$.
13. 10 pts . List all partitions of the set $A=\{\alpha, \beta, \gamma, \delta\}$.
