1. 5pts. each Let $R_{1}=\left\{(a, b) \in \mathbb{R}^{2}: a>b\right\}, R_{2}=\left\{(a, b) \in \mathbb{R}^{2}: a \geq b\right\}, R_{3}=\left\{(a, b) \in \mathbb{R}^{2}: a<b\right\}$, $R_{4}=\left\{(a, b) \in \mathbb{R}^{2}: a \leq b\right\}, R_{5}=\left\{(a, b) \in \mathbb{R}^{2}: a=b\right\}, R_{6}=\left\{(a, b) \in \mathbb{R}^{2}: a \neq b\right\}$. Find the following.
(a) $R_{2}-R_{1}$
(b) $R_{4} \oplus R_{6}$
(c) $R_{1} \circ R_{5}$
(d) $R_{3} \circ R_{3}$
2. 10 pts . Let R be a relation that is reflexive and transitive. Prove that $R^{n}=R$ for all $n \in \mathbb{Z}^{+}$.
3. 5pts. each Let R_{1} and R_{2} be relations on a set A represented by the matrices

$$
\mathbf{M}_{R_{1}}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 1 \\
1 & 0 & 0
\end{array}\right] \quad \text { and } \quad \mathbf{M}_{R_{2}}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

Find the matrices that represent
(a) $R_{2} \circ R_{1}$
(b) $R_{1} \oplus R_{2}$
4. 10 pts . Suppose $A \neq \varnothing$ and R is an equivalence relation on A. Show that there is a function f with domain A such that $(x, y) \in R$ if and only if $f(x)=f(y)$.
5. 5 pts. each What is the congruence class of $[n]_{6}$ (that is, the equivalence class of n with respect to congruence modulo 6) when
(a) $n=4$
(b) $n=-5$
6. 10 pts. Let $G=(V, E)$ be a simple graph. Show that the relation R on V defined so that $u R v$ if and only if there is an edge associated with $\{u, v\}$ is a symmetric, irreflexive relation on V. (A relation on a set is irreflexive if no element of the set is related to itself.)
7. 10 pts. Show that in a simple graph with at least two vertices there must be two vertices that have the same degree.
8. 10 pts. Determine whether the graph below is bipartite. If it is, then give a bipartition $\left(V_{1}, V_{2}\right)$.

9. 10 pts. The converse of a directed graph $G=(V, E)$, denoted by G^{c}, is the directed graph (V, F), where the set F is obtained by reversing the direction of each edge in E. Show that $G^{c}=G$ if and only if the relation associated with G is symmetric. (Recall a directed graph has no multiple edges.)
10. 10 pts. Draw a graph with adjacency matrix

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0
\end{array}\right] .
$$

11. 10 pts. Draw an undirected graph represented by the adjacency matrix

$$
\left[\begin{array}{lll}
1 & 3 & 2 \\
3 & 0 & 4 \\
2 & 4 & 0
\end{array}\right] .
$$

