1. 10 pts . Prove or disprove: If A, B, and C are nonempty sets such that $A \times B=A \times C$, then $B=C$.
2. 10 pts. Let $A=\{b, c, d, e\}$ and $B=\{a, c, d, e, f\}$. Find $A \cup B, A \cap B, A-B$, and $B-A$.
3. Let A, B, and C be sets. Prove the following (do not use Venn diagrams):
(a) 5 pts. $A \cap(B-A)=\varnothing$
(b) 10 pts. $(B-A) \cup(C-A)=(B \cup C)-A$
4. 10 pts. Let $f: \mathbb{R} \rightarrow(0, \infty)$. Show that $f(x)$ is strictly increasing if and only if the function $g(x)=1 / f(x)$ is strictly decreasing. How do we know that $g(x)$ is defined for all $x \in \mathbb{R}$?
5. 5pts. each Let $S=\{-1,0,2,4,7\}$. Find $f(S)$ if:
(a) $f(x)=-3 x+5$
(b) $f(x)=\left\lfloor\left(x^{2}+1\right) / 4\right\rfloor$
6. 10 pts. Using an iterative approach, find the solution to the recurrence relation $a_{n}=a_{n-1}-n$, where $a_{0}=4$.
7. 5 pts. Compute the double sum:

$$
\sum_{i=1}^{3} \sum_{j=0}^{3}(2 i-3 j) .
$$

8. 10 pts . Find the product $A B$, where

$$
A=\left[\begin{array}{rr}
-1 & a \\
b & 0 \\
2 & -3
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{rrr}
0 & c & 1 \\
-5 & a & b
\end{array}\right] .
$$

9. 5 pts. What time does a 24-hour clock read 1013 hours after it reads 17:00? Show whatever work you did to arrive at the answer.
10. 10 pts . Suppose $a, b \in \mathbb{Z}, a \equiv 10(\bmod 17)$, and $b \equiv 7(\bmod 17)$. Find the integer $c \in[0,16]$ such that $c \equiv a-4 b(\bmod 17)$.
11. 5pts. each Convert:
(a) $(F A D 09)_{16}$ to its binary expansion.
(b) 643 to its binary expansion.
12. 10 pts . Find the product: $(7301)_{8} \cdot(54)_{8}$. Express the answer as an octal expansion.
13. 10 pts. each Show the process in doing each of the following.
(a) Find the prime factorization for 6174 and 7800.
(b) Find $\operatorname{gcd}(6174,7800)$ and $\operatorname{lcm}(6174,7800)$.
