Math 121 Summer 2023 Exam 2

NAME:

- 1. 10 pts. Prove or disprove: If A, B, and C are nonempty sets such that $A \times B = A \times C$, then B = C.
- 2. 10 pts. Let $A = \{b, c, d, e\}$ and $B = \{a, c, d, e, f\}$. Find $A \cup B$, $A \cap B$, A B, and B A.
- 3. Let A, B, and C be sets. Prove the following (do not use Venn diagrams):
 - (a) <u>5 pts.</u> $A \cap (B A) = \emptyset$ (b) <u>10 pts.</u> $(B - A) \cup (C - A) = (B \cup C) - A$
- 4. 10 pts. Let $f : \mathbb{R} \to (0, \infty)$. Show that f(x) is strictly increasing if and only if the function g(x) = 1/f(x) is strictly decreasing. How do we know that g(x) is defined for all $x \in \mathbb{R}$?
- 5. 5 pts. each Let $S = \{-1, 0, 2, 4, 7\}$. Find f(S) if: (a) f(x) = -3x + 5(b) $f(x) = \lfloor (x^2 + 1)/4 \rfloor$
- 6. 10 pts. Using an iterative approach, find the solution to the recurrence relation $a_n = a_{n-1} n$, where $a_0 = 4$.
- 7. 5 pts. Compute the double sum:

$$\sum_{i=1}^{3} \sum_{j=0}^{3} (2i - 3j).$$

8. 10 pts. Find the product AB, where

$$A = \begin{bmatrix} -1 & a \\ b & 0 \\ 2 & -3 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 0 & c & 1 \\ -5 & a & b \end{bmatrix}.$$

9. <u>5 pts.</u> What time does a 24-hour clock read 1013 hours after it reads 17:00? Show whatever work you did to arrive at the answer.

- 10. 10 pts. Suppose $a, b \in \mathbb{Z}$, $a \equiv 10 \pmod{17}$, and $b \equiv 7 \pmod{17}$. Find the integer $c \in [0, 16]$ such that $c \equiv a 4b \pmod{17}$.
- 11. 5 pts. each Convert:
 - (a) $(FAD09)_{16}$ to its binary expansion.
 - (b) 643 to its binary expansion.
- 12. 10 pts. Find the product: $(7301)_8 \cdot (54)_8$. Express the answer as an octal expansion.
- 13. 10 pts. each Show the process in doing each of the following.
 - (a) Find the prime factorization for 6174 and 7800.
 - (b) Find gcd(6174, 7800) and lcm(6174, 7800).