1 For any $x \in \mathbb{R}$ we have $|x - x| = 0 \le 1$, so that xRx, and hence R is reflexive.

For $x, y \in \mathbb{R}$ suppose xRy, so that $|x - y| \leq 1$. Since |x - y| = |y - x| we have $|y - x| \leq 1$ also, and thus yRx. R is symmetric.

Let x = 2, y = 1, z = 0. Then |x - y| = 1 and |y - z| = 1, so that xRy and yRz. However, |x - z| = 2 > 1, and thus $x \not R z$. R is **not transitive**.

2 For $S \in \mathcal{P}(S)$ we have $S \cap S = S \neq \emptyset$, so that $(S, S) \notin \mathcal{R}$ and \mathcal{R} is **not reflexive**.

Suppose $(X, Y) \in \mathcal{R}$, so that $X \cap Y = \emptyset$. Then $Y \cap X = \emptyset$ also, which implies $(Y, X) \in \mathcal{R}$ and thus \mathcal{R} is symmetric.

Let $X = \{a, b\}, Y = \{c, d\}$, and $Z = \{a\}$. Then $X \cap Y = \emptyset$ (so $(X, Y) \in \mathcal{R}$) and $Y \cap Z = \emptyset$ (so $(Y, Z) \in \mathcal{R}$), yet $X \cap Z \neq \emptyset$ (so $(X, Z) \notin \mathcal{R}$). Hence \mathcal{R} is **not transitive**.

3a Trouble will be encountered when trying to verify transitivity, and then only one strategy is left: solve the equation $\frac{a+b}{2} = \sqrt{ab}$ for a (or b), and see if what results is simpler to work with. We solve for a:

$$a+b=2\sqrt{ab} \quad \longleftrightarrow \quad (a+b)^2=4ab \quad \longleftrightarrow \quad a^2-2ab+b^2=0 \quad \longleftrightarrow \quad (a-b)^2=0 \quad \longleftrightarrow \quad a=b.$$

This shows that $\frac{a+b}{2} = \sqrt{ab}$ is equivalent to a = b, and so relation R is such that aRb if a = b. Thus R is merely the equality relation =, which is known to be an equivalence relation and so we are done.

3b For $a \in \mathbb{R}^+$ we have $[a] = \{x \in \mathbb{R}^+ : xRa\} = \{x \in \mathbb{R}^+ : x = a\} = \{a\}$. That is, each positive real number is in an equivalence class by itself.

4 Let $y \in f(A_1 \cup A_2)$. Then y = f(x) for some $x \in A_1 \cup A_2$. If $x \in A_1$, then $y \in f(A_1)$; and if $x \in A_2$, then $y \in f(A_2)$. Therefore $y \in f(A_1) \cup f(A_2)$ and it's established that $f(A_1 \cup A_2) \subseteq f(A_1) \cup f(A_2)$.

Now suppose $y \in f(A_1) \cup f(A_2)$. If $y \in f(A_1)$, then y = f(x) for some $x \in A_1$, and since $x \in A_1 \cup A_2$ it follows that $y \in f(A_1 \cup A_2)$. If $y \in f(A_2)$, then y = f(x) for some $x \in A_2$, and since $x \in A_1 \cup A_2$ it follows that $y \in f(A_1 \cup A_2)$. Therefore $y \in f(A_1 \cup A_2)$ and it's established that $f(A_1) \cup f(A_2) \subseteq f(A_1 \cup A_2)$.

5 We disprove that f is a function from S to S by noting that $(-1, 1) \in f$ and $(-1, -1) \in f$.

6 For any $n \in \mathbb{Z}$ we find that f(n) = n, so f is onto. However, f is not one-to-one since, for instance, f(0.1) = f(0.2) = 1.

7 Let $y \in \mathbb{R}$. Solving $y = 4 - x^5$ for x yields $x = \sqrt[5]{4-y}$, which certainly is a real number, and since

$$f(\sqrt[5]{4-y}) = 4 - (\sqrt[5]{4-y})^5 = 4 - (4-y) = y,$$

it follows that f is onto.

Next, suppose that f(a) = f(b). Then $4 - a^5 = 4 - b^5$, implying $a^5 = b^5$, and finally a = b. We conclude that f is one-to-one, and therefore a bijection. For $x \in \mathbb{R}$ we have $f^{-1}(x) = \sqrt[5]{4-x}$.

8 Define $f: E \to O$ by f(n) = n + 1 for each $n \in E$. Certainly f is one-to-one, and since for any $k \in O$ we have $k - 1 \in E$ such that f(k - 1) = k, we see f is also onto and hence a bijection. Therefore |E| = |O|.

9 Suppose $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$. Then a - b = kn and $b - c = \ell n$ for some $k, \ell \in \mathbb{Z}$. Now, $a - c = (a - b) + (b - c) = kn + \ell n = (k + \ell)n$ for $k + \ell \in \mathbb{Z}$, and therefore $a \equiv c \pmod{n}$.

10 $2^6 + 2^6 = 2^7 = 128$

11 $2(26^3 \cdot 10^3) = 35, 152, 000$

12a Let T, A, and G be the set of those taking topology, abstract algebra, and graph theory, respectively. We have: |T| = 23, |A| = 19, |G| = 18, $|T \cap A| = 7$, $|T \cap G| = 9$, $|A \cap G| = 11$, and $|T \cup A \cup G| = 36$. By the principle of inclusion-exclusion,

 $|T \cap A \cap G| = |T \cup A \cup G| + |T \cap A| + |T \cap G| + |A \cap G| - |T| - |A| - |G| = 3.$

That is, exactly 3 plan to take all three courses.

12b We can unravel the mystery by filling out a Venn diagram starting by placing a 3 in the $T \cap A \cap G$ region. The answer is 10 + 4 + 1 = 15.

12c 4+6+8=18

13 We need to find the minimum number of marbles that must be drawn to be assured of getting 9 red marbles or 9 blue marbles or 9 yellow marbles. Consider the worst case scenario: drawing marble after marble until 8 of each color is in hand. At this point 24 marbles have been drawn, and so the 25th marble drawn is guaranteed to result in having 9 of one color in hand. The general pigeonhole principle gives precisely this answer: at least 25 marbles must be drawn.