1 For any $x \in \mathbb{R}$ we have $|x-x|=0 \leq 1$, so that $x R x$, and hence $R$ is reflexive.
For $x, y \in \mathbb{R}$ suppose $x R y$, so that $|x-y| \leq 1$. Since $|x-y|=|y-x|$ we have $|y-x| \leq 1$ also, and thus $y R x . R$ is symmetric.

Let $x=2, y=1, z=0$. Then $|x-y|=1$ and $|y-z|=1$, so that $x R y$ and $y R z$. However, $|x-z|=2>1$, and thus $x \not R z . R$ is not transitive.

2 For $S \in \mathcal{P}(S)$ we have $S \cap S=S \neq \varnothing$, so that $(S, S) \notin \mathcal{R}$ and $\mathcal{R}$ is not reflexive.
Suppose $(X, Y) \in \mathcal{R}$, so that $X \cap Y=\varnothing$. Then $Y \cap X=\varnothing$ also, which implies $(Y, X) \in \mathcal{R}$ and thus $\mathcal{R}$ is symmetric.

Let $X=\{a, b\}, Y=\{c, d\}$, and $Z=\{a\}$. Then $X \cap Y=\varnothing($ so $(X, Y) \in \mathcal{R})$ and $Y \cap Z=\varnothing$ (so $(Y, Z) \in \mathcal{R})$, yet $X \cap Z \neq \varnothing$ (so $(X, Z) \notin \mathcal{R})$. Hence $\mathcal{R}$ is not transitive.

3a Trouble will be encountered when trying to verify transitivity, and then only one strategy is left: solve the equation $\frac{a+b}{2}=\sqrt{a b}$ for $a$ (or $b$ ), and see if what results is simpler to work with. We solve for $a$ :
$a+b=2 \sqrt{a b} \hookrightarrow(a+b)^{2}=4 a b \quad \hookrightarrow a^{2}-2 a b+b^{2}=0 \quad \hookrightarrow(a-b)^{2}=0 \quad \hookrightarrow a=b$.
This shows that $\frac{a+b}{2}=\sqrt{a b}$ is equivalent to $a=b$, and so relation $R$ is such that $a R b$ if $a=b$. Thus $R$ is merely the equality relation $=$, which is known to be an equivalence relation and so we are done.

3b For $a \in \mathbb{R}^{+}$we have $[a]=\left\{x \in \mathbb{R}^{+}: x R a\right\}=\left\{x \in \mathbb{R}^{+}: x=a\right\}=\{a\}$. That is, each positive real number is in an equivalence class by itself.

4 Let $y \in f\left(A_{1} \cup A_{2}\right)$. Then $y=f(x)$ for some $x \in A_{1} \cup A_{2}$. If $x \in A_{1}$, then $y \in f\left(A_{1}\right)$; and if $x \in A_{2}$, then $y \in f\left(A_{2}\right)$. Therefore $y \in f\left(A_{1}\right) \cup f\left(A_{2}\right)$ and it's established that $f\left(A_{1} \cup A_{2}\right) \subseteq$ $f\left(A_{1}\right) \cup f\left(A_{2}\right)$.

Now suppose $y \in f\left(A_{1}\right) \cup f\left(A_{2}\right)$. If $y \in f\left(A_{1}\right)$, then $y=f(x)$ for some $x \in A_{1}$, and since $x \in A_{1} \cup A_{2}$ it follows that $y \in f\left(A_{1} \cup A_{2}\right)$. If $y \in f\left(A_{2}\right)$, then $y=f(x)$ for some $x \in A_{2}$, and since $x \in A_{1} \cup A_{2}$ it follows that $y \in f\left(A_{1} \cup A_{2}\right)$. Therefore $y \in f\left(A_{1} \cup A_{2}\right)$ and it's established that $f\left(A_{1}\right) \cup f\left(A_{2}\right) \subseteq f\left(A_{1} \cup A_{2}\right)$.

5 We disprove that $f$ is a function from $S$ to $S$ by noting that $(-1,1) \in f$ and $(-1,-1) \in f$.

6 For any $n \in \mathbb{Z}$ we find that $f(n)=n$, so $f$ is onto. However, $f$ is not one-to-one since, for instance, $f(0.1)=f(0.2)=1$.

7 Let $y \in \mathbb{R}$. Solving $y=4-x^{5}$ for $x$ yields $x=\sqrt[5]{4-y}$, which certainly is a real number, and since

$$
f(\sqrt[5]{4-y})=4-(\sqrt[5]{4-y})^{5}=4-(4-y)=y
$$

it follows that $f$ is onto.

Next, suppose that $f(a)=f(b)$. Then $4-a^{5}=4-b^{5}$, implying $a^{5}=b^{5}$, and finally $a=b$. We conclude that $f$ is one-to-one, and therefore a bijection. For $x \in \mathbb{R}$ we have $f^{-1}(x)=\sqrt[5]{4-x}$.

8 Define $f: E \rightarrow O$ by $f(n)=n+1$ for each $n \in E$. Certainly $f$ is one-to-one, and since for any $k \in O$ we have $k-1 \in E$ such that $f(k-1)=k$, we see $f$ is also onto and hence a bijection. Therefore $|E|=|O|$.

9 Suppose $a \equiv b(\bmod n)$ and $b \equiv c(\bmod n)$. Then $a-b=k n$ and $b-c=\ell n$ for some $k, \ell \in \mathbb{Z}$. Now, $a-c=(a-b)+(b-c)=k n+\ell n=(k+\ell) n$ for $k+\ell \in \mathbb{Z}$, and therefore $a \equiv c(\bmod n)$.
$102^{6}+2^{6}=2^{7}=128$
$112\left(26^{3} \cdot 10^{3}\right)=35,152,000$

12a Let $T, A$, and $G$ be the set of those taking topology, abstract algebra, and graph theory, respectively. We have: $|T|=23,|A|=19,|G|=18,|T \cap A|=7,|T \cap G|=9,|A \cap G|=11$, and $|T \cup A \cup G|=36$. By the principle of inclusion-exclusion,

$$
|T \cap A \cap G|=|T \cup A \cup G|+|T \cap A|+|T \cap G|+|A \cap G|-|T|-|A|-|G|=3
$$

That is, exactly 3 plan to take all three courses.

12b We can unravel the mystery by filling out a Venn diagram starting by placing a 3 in the $T \cap A \cap G$ region. The answer is $10+4+1=15$.


12c $4+6+8=18$

13 We need to find the minimum number of marbles that must be drawn to be assured of getting 9 red marbles or 9 blue marbles or 9 yellow marbles. Consider the worst case scenario: drawing marble after marble until 8 of each color is in hand. At this point 24 marbles have been drawn, and so the 25 th marble drawn is guaranteed to result in having 9 of one color in hand. The general pigeonhole principle gives precisely this answer: at least $\mathbf{2 5}$ marbles must be drawn.

