
Math 121 Exam #2 Key (Summer 2024)

1a There exists an irrational number x such that, for any rational number y, xy ̸= 0.

1b For every odd integer m there exists an integer n such that mn is even.

2a Let E be the set of even integers, and O the set of odd integers. Then:

∃p ∈ E ∃q ∈ O[(p+ 8)2 + (q − 5)2 = 0].

2b ∀p ∈ E ∀q ∈ O[(p+ 8)2 + (q − 5)2 ̸= 0].

2c For every even integer p and odd integer q, (p+ 8)2 + (q − 5)2 ̸= 0.

3 Let a, b ∈ Z be arbitrary. Suppose a and b are odd. Then there exist k, ℓ ∈ Z such that
a = 2k + 1 and b = 2ℓ+ 1. Now,

ab+ a+ b = (2k + 1)(2ℓ+ 1) + (2k + 1) + (2ℓ+ 1) = 2(2kℓ+ 2k + 2ℓ+ 1) + 1,

and since 2kℓ+ 2k + 2ℓ+ 1 is an integer, we conclude that ab+ a+ b is odd.

4 The contrapositive is “If k < 3n + 1 and m < 2n + 1, then 2k + 3m < 12n + 1. Proof
follows.

Suppose k < 3n + 1 and m < 2n + 1. Since k and m are integers, it follows that k ≤ 3n
and m ≤ 2n, and thus 2k ≤ 6n and 3m ≤ 6n. Now we find that 2k + 3m ≤ 6n + 6n = 12n,
and therefore 2k + 3m < 12n+ 1.

5 Let x ∈ A ∩ (B ∪ C), so that x ∈ A and x ∈ B ∪ C. There are two cases: either x ∈ A
and x ∈ B, or x ∈ A and x ∈ C. Case 1: Suppose x ∈ A and x ∈ B. Then x ∈ A ∩ B, and
hence x ∈ (A ∩B) ∪ (A ∩C). Case 2: Suppose x ∈ A and x ∈ C. Then x ∈ A ∩C, and hence
x ∈ (A ∩ B) ∪ (A ∩ C). In either case we conclude that x ∈ (A ∩ B) ∪ (A ∩ C), and therefore
A ∩ (B ∪ C) ⊆ (A ∩B) ∪ (A ∩ C).

Now suppose that x ∈ (A ∩ B) ∪ (A ∩ C). There are two cases: either x ∈ A ∩ B or
x ∈ A ∩ C. Case 1: Suppose x ∈ A ∩ B. Then x ∈ A and x ∈ B, and since the latter implies
that x ∈ B ∪ C, we find x ∈ A ∩ (B ∪ C). Case 2: Suppose x ∈ A ∩ C. Then x ∈ A and
x ∈ C, and since the latter implies that x ∈ B ∪C, we find x ∈ A∩ (B ∪C). In either case we
conclude that x ∈ A ∩ (B ∪ C), and therefore (A ∩B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C).

6a Disproof: The integer 1 cannot be expressed as the sum of two positive integers.

6b Disproof: Let A = {1, 2, 3}, B = {1, 2} and C = {2, 3}. Then A∪B = A∪C (both equal
A), and yet B ̸= C.
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7 Let m = 1 and n = 3. Then m and n have the same parity (they are both odd), and the
given equation is satisfied.

8 Suppose u and v are positive real numbers. Suppose
√
u+

√
v =

√
u+ v. Then (

√
u+

√
v)2 =

(
√
u+ v)2, which implies u + 2

√
uv + v = u + v, and hence 2

√
uv = 0. From this we obtain

uv = 0, so that either u = 0 or v = 0. Since either option contradicts the assumption that u
and v are positive, we conclude that

√
u+

√
v ̸=

√
u+ v.

9 Define P (n) :
∑n

k=1(3k − 1) = n(3n+ 1)/2. We show ∀n ∈ N [P (n)] by induction.
P (1) states 2 = 2, which is true, and so the basis step is established.
Let n ∈ N be arbitrary, and suppose P (n) is true. Now,

n+1∑
k=1

(3k − 1) =
n∑

k=1

(3k − 1) + [3(n+ 1)− 1] =
n(3n+ 1)

2
+ (3n+ 2) =

(n+ 1)(3n+ 4)

2
,

which shows P (n+ 1) to be true. Therefore ∀n ∈ N [P (n)].

10 Define P (n) : n2 > n+ 1. We show ∀n ≥ 2 [P (n)] by induction.
P (2) states that 22 > 2 + 1, which is true, and establishes the basis step.
Let n ≥ 2 be arbitrary, and suppose P (n) is true. Then

(n+ 1)2 = n2 + 2n+ 1 > (n+ 1) + 2n+ 1 = 3n+ 2 > n+ 2 = (n+ 1) + 1,

which shows that P (n+ 1) is true. Therefore ∀n ≥ 2 [P (n)].

11a a2 = 7, a3 = 15, a4 = 31, a5 = 63.

11b It appears an = 2n+1 − 1 for n ≥ 1. Define P (n) : an = 2n+1 − 1. We show by induction
that ∀n ≥ 1[P (n)].

P (1) states that a1 = 21+1 − 1 = 3, which is true, and establishes the basis step.
Let n ≥ 1, and suppose P (n) is true. Now, using the given recurrence relation as well as

P (n), we have

an+1 = 2an + 1 = 2(2n+1 − 1) + 1 = (2n+2 − 2) + 1 = 2n+2 − 1,

which shows P (n+ 1) to be true. Therefore ∀n ≥ 1(an = 2n+1 − 1).


