1a There exists an irrational number x such that, for any rational number $y, x y \neq 0$.

1b For every odd integer m there exists an integer n such that $m n$ is even.

2a Let E be the set of even integers, and O the set of odd integers. Then:

$$
\exists p \in E \exists q \in O\left[(p+8)^{2}+(q-5)^{2}=0\right]
$$

2b $\forall p \in E \forall q \in O\left[(p+8)^{2}+(q-5)^{2} \neq 0\right]$.

2c For every even integer p and odd integer $q,(p+8)^{2}+(q-5)^{2} \neq 0$.

3 Let $a, b \in \mathbb{Z}$ be arbitrary. Suppose a and b are odd. Then there exist $k, \ell \in \mathbb{Z}$ such that $a=2 k+1$ and $b=2 \ell+1$. Now,

$$
a b+a+b=(2 k+1)(2 \ell+1)+(2 k+1)+(2 \ell+1)=2(2 k \ell+2 k+2 \ell+1)+1,
$$

and since $2 k \ell+2 k+2 \ell+1$ is an integer, we conclude that $a b+a+b$ is odd.

4 The contrapositive is "If $k<3 n+1$ and $m<2 n+1$, then $2 k+3 m<12 n+1$. Proof follows.

Suppose $k<3 n+1$ and $m<2 n+1$. Since k and m are integers, it follows that $k \leq 3 n$ and $m \leq 2 n$, and thus $2 k \leq 6 n$ and $3 m \leq 6 n$. Now we find that $2 k+3 m \leq 6 n+6 n=12 n$, and therefore $2 k+3 m<12 n+1$.

5 Let $x \in A \cap(B \cup C)$, so that $x \in A$ and $x \in B \cup C$. There are two cases: either $x \in A$ and $x \in B$, or $x \in A$ and $x \in C$. Case 1: Suppose $x \in A$ and $x \in B$. Then $x \in A \cap B$, and hence $x \in(A \cap B) \cup(A \cap C)$. Case 2: Suppose $x \in A$ and $x \in C$. Then $x \in A \cap C$, and hence $x \in(A \cap B) \cup(A \cap C)$. In either case we conclude that $x \in(A \cap B) \cup(A \cap C)$, and therefore $A \cap(B \cup C) \subseteq(A \cap B) \cup(A \cap C)$.

Now suppose that $x \in(A \cap B) \cup(A \cap C)$. There are two cases: either $x \in A \cap B$ or $x \in A \cap C$. Case 1: Suppose $x \in A \cap B$. Then $x \in A$ and $x \in B$, and since the latter implies that $x \in B \cup C$, we find $x \in A \cap(B \cup C)$. Case 2: Suppose $x \in A \cap C$. Then $x \in A$ and $x \in C$, and since the latter implies that $x \in B \cup C$, we find $x \in A \cap(B \cup C)$. In either case we conclude that $x \in A \cap(B \cup C)$, and therefore $(A \cap B) \cup(A \cap C) \subseteq A \cap(B \cup C)$.

6a Disproof: The integer 1 cannot be expressed as the sum of two positive integers.

6b Disproof: Let $A=\{1,2,3\}, B=\{1,2\}$ and $C=\{2,3\}$. Then $A \cup B=A \cup C$ (both equal $A)$, and yet $B \neq C$.

7 Let $m=1$ and $n=3$. Then m and n have the same parity (they are both odd), and the given equation is satisfied.

8 Suppose u and v are positive real numbers. Suppose $\sqrt{u}+\sqrt{v}=\sqrt{u+v}$. Then $(\sqrt{u}+\sqrt{v})^{2}=$ $(\sqrt{u+v})^{2}$, which implies $u+2 \sqrt{u v}+v=u+v$, and hence $2 \sqrt{u v}=0$. From this we obtain $u v=0$, so that either $u=0$ or $v=0$. Since either option contradicts the assumption that u and v are positive, we conclude that $\sqrt{u}+\sqrt{v} \neq \sqrt{u+v}$.

9 Define $P(n): \sum_{k=1}^{n}(3 k-1)=n(3 n+1) / 2$. We show $\forall n \in \mathbb{N}[P(n)]$ by induction. $P(1)$ states $2=2$, which is true, and so the basis step is established. Let $n \in \mathbb{N}$ be arbitrary, and suppose $P(n)$ is true. Now,

$$
\sum_{k=1}^{n+1}(3 k-1)=\sum_{k=1}^{n}(3 k-1)+[3(n+1)-1]=\frac{n(3 n+1)}{2}+(3 n+2)=\frac{(n+1)(3 n+4)}{2}
$$

which shows $P(n+1)$ to be true. Therefore $\forall n \in \mathbb{N}[P(n)]$.

10 Define $P(n): n^{2}>n+1$. We show $\forall n \geq 2[P(n)]$ by induction.
$P(2)$ states that $2^{2}>2+1$, which is true, and establishes the basis step.
Let $n \geq 2$ be arbitrary, and suppose $P(n)$ is true. Then

$$
(n+1)^{2}=n^{2}+2 n+1>(n+1)+2 n+1=3 n+2>n+2=(n+1)+1,
$$

which shows that $P(n+1)$ is true. Therefore $\forall n \geq 2[P(n)]$.

11a $a_{2}=7, a_{3}=15, a_{4}=31, a_{5}=63$.

11b It appears $a_{n}=2^{n+1}-1$ for $n \geq 1$. Define $P(n): a_{n}=2^{n+1}-1$. We show by induction that $\forall n \geq 1[P(n)]$.
$P(1)$ states that $a_{1}=2^{1+1}-1=3$, which is true, and establishes the basis step.
Let $n \geq 1$, and suppose $P(n)$ is true. Now, using the given recurrence relation as well as $P(n)$, we have

$$
a_{n+1}=2 a_{n}+1=2\left(2^{n+1}-1\right)+1=\left(2^{n+2}-2\right)+1=2^{n+2}-1
$$

which shows $P(n+1)$ to be true. Therefore $\forall n \geq 1\left(a_{n}=2^{n+1}-1\right)$.

