1 The truth values of the statements only match in cases 2 and 3:

P	Q	$\neg(P \vee Q)$	$(\neg P) \vee(\neg Q)$
1	1	0	0
1	0	0	1
0	1	0	1
0	0	1	1

2 The truth values match in all cases, so $P \wedge(Q \oplus R) \equiv(P \wedge Q) \oplus(P \wedge R)$.

P	Q	R	$P \wedge(Q \oplus R)$	$(P \wedge Q) \oplus(P \wedge R)$
1	1	1	0	0
1	1	0	1	1
1	0	1	1	1
1	0	0	0	0
0	1	1	0	0
0	1	0	0	0
0	0	1	0	0
0	0	0	0	0

$3 \neg(P \vee Q) \equiv(\neg P \wedge \neg Q): " x>2$ and $x \leq-4$." $\neg(P \wedge Q) \equiv(\neg P \vee \neg Q): " x>2$ or $x \leq-4 . "$

4 Converse is $Q \Rightarrow P$: "If 52 is even, then 99 is even." Contrapositive is $\neg Q \Rightarrow \neg P$: "If 52 is not even, then 99 is not even." $P \Rightarrow Q$ is true, $Q \Rightarrow P$ is false, $\neg Q \Rightarrow \neg P$ is true.
5

P	Q	$(P \Rightarrow Q) \Rightarrow \neg P$
1	1	0
1	0	1
0	1	1
0	0	1

6a "If I will go to the clown circus, then I have the time."

6b "If I get a tax refund, then I am happy." (Note that the original statement needs several modification to create a grammatically correct English if-then statement.)

7a $a=b=c=1$.

7b $\quad a=b=1$ and $c=2$.

8 The statement is a tautology.

P	Q	$(P \wedge(\neg Q)) \Rightarrow(P \vee Q)$
1	1	1
1	0	1
0	1	1
0	0	1

$9 A=\{-1,0,1\}, B=\{-1,0,1\}, C=\{-1,0,1\}, D=\{-1,0,1\}, E=\{0,1\}$. Thus $A=B=C=D$.

10a $\overline{A \cup B}=\{0,6\}$

10b $\bar{A} \cup(A \cap B)=\{0,3,6,7\} \cup\{4\}=\{0,3,4,6,7\}$

10c $\quad A-\bar{B}=\{1,2,4,5,8\}-\{0,1,2,5,6,8\}=\{4\}$

11 We use the property $P \wedge(Q \vee R) \equiv(P \wedge Q) \vee(P \wedge R)$:

$$
\begin{aligned}
x \in A \cap(B \cup C) & \equiv(x \in A) \wedge(x \in B \cup C) \\
& \equiv(x \in A) \wedge((x \in B) \vee(x \in C)) \\
& \equiv((x \in A) \wedge(x \in B)) \vee((x \in A) \wedge(x \in C)) \\
& \equiv(x \in A \cap B) \vee(x \in A \cap C) \\
& \equiv x \in(A \cap B) \cup(A \cap C)
\end{aligned}
$$

$12 \mathcal{P}(A)=\{\varnothing,\{1\},\{2\}, A\}$ and $\mathcal{P}(B)=\{\varnothing, B\}$, so we have

$$
\mathcal{P}(A) \times \mathcal{P}(B)=\{(\varnothing, \varnothing),(\varnothing, B),(\{1\}, \varnothing),(\{1\}, B),(\{2\}, \varnothing),(\{2\}, B),(A, \varnothing),(A, B)\}
$$

13 There are 15 partitions in all...

$$
\begin{aligned}
& \{A\}, \quad\{\{\alpha\},\{\beta\},\{\gamma\},\{\delta\}\}, \\
& \{\{\alpha, \beta\},\{\gamma\},\{\delta\}\}, \quad\{\{\alpha, \gamma\},\{\beta\},\{\delta\}\}, \quad\{\{\alpha, \delta\},\{\beta\},\{\gamma\}\}, \\
& \{\{\beta, \gamma\},\{\alpha\},\{\delta\}\}, \quad\{\{\beta, \delta\},\{\alpha\},\{\gamma\}\}, \quad\{\{\gamma, \delta\},\{\alpha\},\{\beta\}\}, \\
& \{\{\alpha, \beta\},\{\gamma, \delta\}\}, \quad\{\{\alpha, \gamma\},\{\beta, \delta\}\}, \quad\{\{\alpha, \delta\},\{\beta, \gamma\}\}, \\
& \{\{\alpha, \beta, \gamma\},\{\delta\}\}, \quad\{\{\alpha, \beta, \delta\},\{\gamma\}\}, \quad\{\{\alpha, \gamma, \delta\},\{\beta\}\}, \quad\{\{\beta, \gamma, \delta\},\{\alpha\}\} .
\end{aligned}
$$

