
Math 121 Exam #4 Key (Summer 2023)

1a R2 −R1 = {(a, b) ∈ R2 : a = b} = R5.

1b R4 ⊕R6 = (R4 −R6) ∪ (R6 −R4) = {(a, b) : a = b} ∪ {(a, b) : a > b} = R5 ∪R1.

1c All relations Rk are subsets of R2 = R× R. So

R1 ◦R5 = {(a, c) ∈ R2 : ∃b ∈ R[(a, b) ∈ R5 ∧ (b, c) ∈ R1]}
= {(a, c) ∈ R2 : ∃b ∈ R[(a = b) ∧ (b > c)]}
= {(a, c) ∈ R2 : a > c} = R1.

1d Whenever a < c there exists some b ∈ R such that a < b < c, so

R3 ◦R3 = {(a, c) ∈ R2 : ∃b ∈ R[(a, b) ∈ R3 ∧ (b, c) ∈ R3]}
= {(a, c) ∈ R2 : ∃b ∈ R[(a < b) ∧ (b < c)]}
= {(a, c) ∈ R2 : a < c} = R3.

2 This will be done with induction. In the case when n = 1 we find Rn = R becomes R = R,
which is trivially true.

Let n ∈ Z+ be arbitrary, and suppose that Rn = R. Then Rn+1 = Rn ◦ R = R ◦ R. We
show that R ◦ R = R. Suppose (x, y) ∈ R. Since R is reflexive we have (x, x) ∈ R as well, so
there exists some z (namely z = x) such that (x, z) ∈ R and (z, y) ∈ R, and thus (x, y) ∈ R◦R.
This establishes that R ⊆ R ◦R.

Next suppose (x, y) ∈ R ◦ R. Then there exists z such that (x, z) ∈ R and (z, y) ∈ R, and
hence (x, y) ∈ R since R is transitive. This establishes that R ◦ R ⊆ R. Therefore R ◦ R = R,
and with our inductive hypothesis we obtain Rn+1 = Rn ◦R = R ◦R = R.

3a We have

MR2◦R1 = MR1 ⊙MR2 =

0 1 1
1 1 1
0 1 0

.
3b R1 ⊕R2 = (R1 −R2) ∪ (R2 −R1) = (R1 ∩R2) ∪ (R2 ∩R1), so with

MR1
=

1 0 1
0 0 0
0 1 1

 and MR2
=

1 0 1
1 0 0
0 0 0


we obtain

MR1⊕R2 = (MR1 ∧MR2
) ∨ (MR2 ∧MR1

) =

0 0 0
1 0 0
0 0 0

∨
0 0 0
0 0 0
0 1 1

=

0 0 0
1 0 0
0 1 1

.
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4 Let A/R (read as “A modulo R”) be the set of all equivalence classes with respect to R;
that is, A/R = {[x]R : x ∈ A}. We now define a function f : A → A/R by f(x) = [x]R.
Observe that f(x) = f(y) implies [x]R = [y]R, which in turn by a theorem in §9.5 of the text
implies (x, y) ∈ R. Conversely, by the same theorem, (x, y) ∈ R implies [x]R = [y]R implies
f(x) = f(y).

5a [4]6 = {4 + 6n : n ∈ Z} = {. . . ,−14,−8,−2, 4, 10, 16, 22, . . .}.

5b [−5]6 = {−5 + 6n : n ∈ Z} = {. . . ,−23,−17,−11,−5, 1, 7, 13, . . .}.

6 So relation R on V is such that (u, v) ∈ R iff {u, v} ∈ E. Let (u, v) ∈ R. Then {v, u} =
{u, v} ∈ R, which immediately implies that (v, u) ∈ R and hence R is symmetric. We also find
that {v, v} /∈ E for all v ∈ V since G is a simple graph and so has no loops, which implies that
(v, v) /∈ R for all v ∈ V and therefore R irreflexive.

7 Let G = (V,E) be a simple graph with |V | = n ≥ 2. Each vertex v ∈ V may be adjacent to
any combination of the other n− 1 vertices, including all of them or none of them. Since G is
a simple graph, this means that each vertex v ∈ V must have 0 ≤ deg(v) ≤ n− 1. If no vertex
is isolated, then in fact we have 1 ≤ deg(v) ≤ n − 1 for each of the n choices for v ∈ V , and
the Pigeonhole Principle implies that there must exist two vertices with the same degree. If at
least two vertices are isolated, then there are at least two vertices with degree zero and hence
have the same degree. Finally, to have precisely one isolated vertex v0 requires n ≥ 3 (why?),
in which case we may carry out the same argument for the subgraph H = (V − {v0}, E) that
we earlier made for G on the assumption that G has no isolated vertices; then, because the
degrees of the vertices of H equal the degrees of the corresponding (nonisolated) vertices of G,
we again conclude that G has at least two vertices of the same degree.

8 Coloring the vertices with two colors, we obtain a bipartition (V1, V2) with V1 = {a, c, f, h}
and V2 = {b, d, e, g, i} (or vice-versa).

a

b
c

d

e f

gh
i

9 Since G = (V,E) is directed and without multiple edges, the relation associated with G is
simply the set E, which is a relation on V with (u, v) ∈ E iff u is adjacent to v.
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Suppose Gc = (V, F ) is such that Gc = G, so that E = F . Let (u, v) ∈ E. Then (v, u) ∈ F ,
and since E = F it follows that (v, u) ∈ E. Thus for all u, v ∈ V , (v, u) ∈ E whenever
(u, v) ∈ E, and therefore E (the relation associated with G) is symmetric.

Now suppose that E, the relation associated with G, is symmetric. Suppose u, v ∈ V are
such that (u, v) ∈ E. Then (v, u) ∈ E also, which implies that (u, v) ∈ F and hence E ⊆ F .
Similarly, if (u, v) ∈ F , then (v, u) ∈ E, implying that (u, v) ∈ E and hence F ⊆ E. Therefore
E = F and we conclude that Gc = G.

10 Because the matrix is not symmetric the graph must be directed:

a b

cd

11 Arranging the vertices into a triangle is not necessary (they could be collinear), but it
renders the graph easier to look at:

a b

c


