
Math 121 Exam #3 Key (Summer 2023)

1 To prove:

∀n ≥ 1

(
n∑

k=1

k2k = (n− 1)2n+1 + 2

)
.

Let P (n) denote the equation in parentheses. P (1) is equivalent to 2 = 2, so the base case is
affirmed. Now let n ≥ 1 and suppose P (n) is true. Using this inductive hypothesis, we find
that
n+1∑
k=1

k2k =
n∑

k=1

k2k + (n+ 1)2n+1 = (n− 1)2n+1 + 2 + (n+ 1)2n+1 = [(n+ 1)− 1]2(n+1)+1 + 2.

Thus P (n+ 1) is true, and the proof by induction is done.

2 To prove: ∀n ≥ 1(3 | n3 + 2n). Let P (n) denote 3 | n3 + 2n. Since P (1) states simply
that 3 | 3, which is true, we see the base case holds. Let n ≥ 1 and suppose P (n), so that
n3 + 2n = 3k for some k ∈ Z. Now,
(n+ 1)3 + 2(n+ 1) = (n3 + 2n) + (3n2 + 3n+ 3) = 3k + 3(n2 + n+ 1) = 3(n2 + n+ k + 1),

which shows (n + 1)3 + 2(n + 1) to be a multiple of 3, and hence P (n + 1) is true. The proof
by induction is done.

3 Letting P (n) be an ≤ (5
2
)n, we prove ∀n ≥ 0[P (n)] with strong induction. First, P (0) is

1 ≤ 1, which being true affirms the base case.
Let n ≥ 0, and suppose P (k) (i.e. ak ≤ (5

2
)k) for 0 ≤ k ≤ n. To show is P (n + 1). We’re

given an+1 = 2an + an−1, but an−1 becomes the undefined oddity a−1 if n = 0, so the n = 0
case must be investigated separately. When n = 0 we have P (n+ 1) = P (1), which is a1 ≤ 5

2
;

and since we’re given a1 = 2, it’s clear P (1) is true. We henceforth assume n ≥ 1. Using our
inductive hypothesis,

an+1 = 2an + an−1 ≤ 2(5
2
)n + (5

2
)n−1 = 6(5

2
)n−1 ≤ (5

2
)2(5

2
)n−1 = (5

2
)n+1,

which shows P (n+ 1), and the strong induction proof is done.

4 Let A = {a, b, . . . , j} and B = {2, 4, 6, 8}. There are 410 different functions f : A → B
possible: for each of the 10 values of x ∈ A any one of 4 values y ∈ B may be chosen to have
f(x) = y. Use the product rule.

5 Let S = {1000, 1001, . . . , 9999}. We first find the number of integers in S that are divisible
by 3 or 13. Let

D3 = {n ∈ S : 3 | n}, D13 = {n ∈ S : 13 | n} D39 = {n ∈ S : 39 | n}.
Then

D3 = {3k ∈ S : k ∈ Z} = {3k : 1000 ≤ 3k ≤ 9999} = {3k : 334 ≤ k ≤ 3333},
since k is an integer, and similarly

D13 = {13k : 1000 ≤ 13k ≤ 9999} = {13k : 77 ≤ k ≤ 769},
D39 = {39k : 1000 ≤ 39k ≤ 9999} = {13k : 26 ≤ k ≤ 256}.
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The number of integers in S that are divisible by 3 or 13 is

|D3 ∪D13| = |D3|+ |D13| − |D3 ∩D13| = |D3|+ |D13| − |D39| = 3000 + 693− 231 = 3462.

Therefore |S| − |D3 ∪D13| = 9000− 3462 = 5538 integers in S are not divisible by 3 or 13.

6 Let A be a set of any d+1 integers. The Division Algorithm implies that for any a ∈ A, the
division a/d has remainder 0 ≤ r ≤ d− 1, and so only d distinct remainders are possible. Thus
we have d + 1 “objects” (i.e. integers in A), and we may think of each object as being placed
into d “boxes” numbered 0 through d− 1 in the following way: object a ∈ A is placed into box
0 ≤ r ≤ d − 1 if and only if the division a/d has remainder r. According to the Generalized
Pigeonhole Principle there is at least one box containing at least ⌈d+1

d
⌉ = 2 objects. That is,

there are two integers in A with the same remainder when divided by d.

7 Leting X=AB and Y=FGI, we find the number of permutations possible for XCDEHY.
Since there are 6 symbols here, the answer is 6! = 720.

8 We assume the ferrets and gerbils are distinguishable! So there are ferrets f1, f2, f3 and
gerbils g1, g2, g3, g4, g5, g6. Let F denote the three ferrets grouped together (so F is essentially
a set). We first find all the ways to permute the seven objects F, g1, g2, g3, g4, g5, g6. There are
7! ways to do this. But for each of these 7! ways, the ferrets themselves can be permuted 3!
ways. Thus the answer is 7! · 3! = 30,240.

9 Since order does not matter: C(45, 3) · C(57, 4) · C(69, 5) ≈ 6.29940× 1016.

10 There are 13 kinds: A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. We figure out how many 5-card
hands exist that have 5 different kinds: choose 5 of 13 kinds (C(13, 5) ways), and for each of
the 5 kinds chosen select 1 of 4 suits (45 ways). Total number of hands: 45 ·C(13, 5). The total
number of 5-card poker hands is C(52, 5), so the probability is

45 · C(13, 5)

C(52, 5)
≈ 0.507.

11 Let S = {1, 2, . . . , 3500}, and define

D7 = {n ∈ S : 7 | n}, D11 = {n ∈ S : 11 | n} D77 = {n ∈ S : 77 | n}.

Then

D7 = {7k ∈ S : k ∈ Z} = {7k : 1 ≤ 7k ≤ 3500} = {7k : 1 ≤ k ≤ 500},
since k is an integer, and similarly

D11 = {11k : 1 ≤ 11k ≤ 3500} = {11k : 1 ≤ k ≤ 318},
D77 = {77k : 1 ≤ 77k ≤ 3500} = {77k : 1 ≤ k ≤ 45}.

The number of integers in S that are divisible by 7 or 11 is

|D7 ∪D11| = |D7|+ |D11| − |D7 ∩D11| = |D7|+ |D11| − |D77| = 500 + 318− 45 = 773.

The probability is 773
3500

≈ 0.221.
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12 Let P , C, R be the sets of those who like parsnips, carrots, radishes. We have |P | = 64,
|C| = 94, |R| = 58, |P ∩ C| = 26, |P ∩R| = 28, |C ∩R| = 22, and |P ∩ C ∩R| = 14. Now,

|P ∪ C ∪R| = |P |+ |C|+ |R| − |P ∩ C| − |P ∩R| − |C ∩R|+ |P ∩ C ∩R|
= 64 + 94 + 58− 26− 28− 22 + 14 = 154

is the number of professors who like at least one of the vegetables, so there are 270−154 = 116
who like none of them.


