Math 121 Exam \#3 Key (Summer 2023)

1 To prove:

$$
\forall n \geq 1\left(\sum_{k=1}^{n} k 2^{k}=(n-1) 2^{n+1}+2\right)
$$

Let $P(n)$ denote the equation in parentheses. $P(1)$ is equivalent to $2=2$, so the base case is affirmed. Now let $n \geq 1$ and suppose $P(n)$ is true. Using this inductive hypothesis, we find that

$$
\sum_{k=1}^{n+1} k 2^{k}=\sum_{k=1}^{n} k 2^{k}+(n+1) 2^{n+1}=(n-1) 2^{n+1}+2+(n+1) 2^{n+1}=[(n+1)-1] 2^{(n+1)+1}+2
$$

Thus $P(n+1)$ is true, and the proof by induction is done.
2 To prove: $\forall n \geq 1\left(3 \mid n^{3}+2 n\right)$. Let $P(n)$ denote $3 \mid n^{3}+2 n$. Since $P(1)$ states simply that $3 \mid 3$, which is true, we see the base case holds. Let $n \geq 1$ and suppose $P(n)$, so that $n^{3}+2 n=3 k$ for some $k \in \mathbb{Z}$. Now,
$(n+1)^{3}+2(n+1)=\left(n^{3}+2 n\right)+\left(3 n^{2}+3 n+3\right)=3 k+3\left(n^{2}+n+1\right)=3\left(n^{2}+n+k+1\right)$,
which shows $(n+1)^{3}+2(n+1)$ to be a multiple of 3 , and hence $P(n+1)$ is true. The proof by induction is done.

3 Letting $P(n)$ be $a_{n} \leq\left(\frac{5}{2}\right)^{n}$, we prove $\forall n \geq 0[P(n)]$ with strong induction. First, $P(0)$ is $1 \leq 1$, which being true affirms the base case.

Let $n \geq 0$, and suppose $P(k)$ (i.e. $\left.a_{k} \leq\left(\frac{5}{2}\right)^{k}\right)$ for $0 \leq k \leq n$. To show is $P(n+1)$. We're given $a_{n+1}=2 a_{n}+a_{n-1}$, but a_{n-1} becomes the undefined oddity a_{-1} if $n=0$, so the $n=0$ case must be investigated separately. When $n=0$ we have $P(n+1)=P(1)$, which is $a_{1} \leq \frac{5}{2}$; and since we're given $a_{1}=2$, it's clear $P(1)$ is true. We henceforth assume $n \geq 1$. Using our inductive hypothesis,

$$
a_{n+1}=2 a_{n}+a_{n-1} \leq 2\left(\frac{5}{2}\right)^{n}+\left(\frac{5}{2}\right)^{n-1}=6\left(\frac{5}{2}\right)^{n-1} \leq\left(\frac{5}{2}\right)^{2}\left(\frac{5}{2}\right)^{n-1}=\left(\frac{5}{2}\right)^{n+1}
$$

which shows $P(n+1)$, and the strong induction proof is done.
4 Let $A=\{a, b, \ldots, j\}$ and $B=\{2,4,6,8\}$. There are $\mathbf{4}^{\mathbf{1 0}}$ different functions $f: A \rightarrow B$ possible: for each of the 10 values of $x \in A$ any one of 4 values $y \in B$ may be chosen to have $f(x)=y$. Use the product rule.

5 Let $S=\{1000,1001, \ldots, 9999\}$. We first find the number of integers in S that are divisible by 3 or 13 . Let

$$
D_{3}=\{n \in S: 3 \mid n\}, \quad D_{13}=\{n \in S: 13 \mid n\} \quad D_{39}=\{n \in S: 39 \mid n\} .
$$

Then

$$
D_{3}=\{3 k \in S: k \in \mathbb{Z}\}=\{3 k: 1000 \leq 3 k \leq 9999\}=\{3 k: 334 \leq k \leq 3333\},
$$

since k is an integer, and similarly

$$
\begin{aligned}
& D_{13}=\{13 k: 1000 \leq 13 k \leq 9999\}=\{13 k: 77 \leq k \leq 769\} \\
& D_{39}=\{39 k: 1000 \leq 39 k \leq 9999\}=\{13 k: 26 \leq k \leq 256\}
\end{aligned}
$$

The number of integers in S that are divisible by 3 or 13 is

$$
\left|D_{3} \cup D_{13}\right|=\left|D_{3}\right|+\left|D_{13}\right|-\left|D_{3} \cap D_{13}\right|=\left|D_{3}\right|+\left|D_{13}\right|-\left|D_{39}\right|=3000+693-231=3462 .
$$

Therefore $|S|-\left|D_{3} \cup D_{13}\right|=9000-3462=5538$ integers in S are not divisible by 3 or 13 .
6 Let A be a set of any $d+1$ integers. The Division Algorithm implies that for any $a \in A$, the division a / d has remainder $0 \leq r \leq d-1$, and so only d distinct remainders are possible. Thus we have $d+1$ "objects" (i.e. integers in A), and we may think of each object as being placed into d "boxes" numbered 0 through $d-1$ in the following way: object $a \in A$ is placed into box $0 \leq r \leq d-1$ if and only if the division a / d has remainder r. According to the Generalized Pigeonhole Principle there is at least one box containing at least $\left\lceil\frac{d+1}{d}\right\rceil=2$ objects. That is, there are two integers in A with the same remainder when divided by d.

7 Leting $\mathrm{X}=\mathrm{AB}$ and $\mathrm{Y}=\mathrm{FGI}$, we find the number of permutations possible for XCDEHY. Since there are 6 symbols here, the answer is $6!=\mathbf{7 2 0}$.

8 We assume the ferrets and gerbils are distinguishable! So there are ferrets f_{1}, f_{2}, f_{3} and gerbils $g_{1}, g_{2}, g_{3}, g_{4}, g_{5}, g_{6}$. Let F denote the three ferrets grouped together (so F is essentially a set). We first find all the ways to permute the seven objects $F, g_{1}, g_{2}, g_{3}, g_{4}, g_{5}, g_{6}$. There are 7 ! ways to do this. But for each of these 7 ! ways, the ferrets themselves can be permuted 3! ways. Thus the answer is $7!\cdot 3!=\mathbf{3 0 , 2 4 0}$.

9 Since order does not matter: $C(45,3) \cdot C(57,4) \cdot C(69,5) \approx \mathbf{6 . 2 9 9 4 0} \times \mathbf{1 0}^{\mathbf{1 6}}$.
10 There are 13 kinds: A, $2,3,4,5,6,7,8,9,10$, J, Q, K. We figure out how many 5 -card hands exist that have 5 different kinds: choose 5 of 13 kinds ($C(13,5)$ ways), and for each of the 5 kinds chosen select 1 of 4 suits (4^{5} ways). Total number of hands: $4^{5} \cdot C(13,5)$. The total number of 5 -card poker hands is $C(52,5)$, so the probability is

$$
\frac{4^{5} \cdot C(13,5)}{C(52,5)} \approx \mathbf{0 . 5 0 7}
$$

11 Let $S=\{1,2, \ldots, 3500\}$, and define

$$
D_{7}=\{n \in S: 7 \mid n\}, \quad D_{11}=\{n \in S: 11 \mid n\} \quad D_{77}=\{n \in S: 77 \mid n\}
$$

Then

$$
D_{7}=\{7 k \in S: k \in \mathbb{Z}\}=\{7 k: 1 \leq 7 k \leq 3500\}=\{7 k: 1 \leq k \leq 500\}
$$

since k is an integer, and similarly

$$
\begin{aligned}
& D_{11}=\{11 k: 1 \leq 11 k \leq 3500\}=\{11 k: 1 \leq k \leq 318\}, \\
& D_{77}=\{77 k: 1 \leq 77 k \leq 3500\}=\{77 k: 1 \leq k \leq 45\} .
\end{aligned}
$$

The number of integers in S that are divisible by 7 or 11 is

$$
\left|D_{7} \cup D_{11}\right|=\left|D_{7}\right|+\left|D_{11}\right|-\left|D_{7} \cap D_{11}\right|=\left|D_{7}\right|+\left|D_{11}\right|-\left|D_{77}\right|=500+318-45=773 .
$$

The probability is $\frac{773}{3500} \approx \mathbf{0 . 2 2 1}$.

12 Let P, C, R be the sets of those who like parsnips, carrots, radishes. We have $|P|=64$, $|C|=94,|R|=58,|P \cap C|=26,|P \cap R|=28,|C \cap R|=22$, and $|P \cap C \cap R|=14$. Now,

$$
|P \cup C \cup R|=|P|+|C|+|R|-|P \cap C|-|P \cap R|-|C \cap R|+|P \cap C \cap R|
$$

$$
=64+94+58-26-28-22+14=154
$$

is the number of professors who like at least one of the vegetables, so there are $270-154=\mathbf{1 1 6}$ who like none of them.

