Math 121 Exam \#2 Key (Summer 2023)

1 Let $A, B, C \neq \varnothing$, and suppose $A \times B=A \times C$. Let $x \in B$. Then $(a, x) \in A \times B$ for some $a \in A$, so that $(a, x) \in A \times C$ and hence $x \in C$. This shows $B \subseteq C$. The same argument with the roles of B and C reversed (what's often called a "symmetrical argument") leads to the conclusion that $C \subseteq B$, and therefore $B=C$.
$2 A \cup B=\{a, b, c, d, e, f\}, A \cap B=\{c, d, e\}, A-B=\{b\}, B-A=\{a, f\}$.
3a Suppose $x \in B-A$. This immediately implies that $x \notin A$, and hence $x \notin A \cap(B-A)$. Therefore $A \cap(B-A)=\varnothing$.

3b Let $x \in(B-A) \cup(C-A)$. Then either $x \in B-A$ or $x \in C-A$, and so either $x \in B$ and $x \notin A$, or $x \in C$ and $x \notin A$. That is, $x \in B$ or $x \in C$, with $x \notin A$ in either case, and hence $x \in B \cup C$ with $x \notin A$. It follows that $x \in(B \cup C)-A$, and therefore $(B-A) \cup(C-A) \subseteq(B \cup C)-A$.

Now let $x \in(B \cup C)-A$, so that $x \in B \cup C$ and $x \notin A$. Then either $x \in B$ and $x \notin A$, or $x \in C$ and $x \notin A$; that is, either $x \in B-A$ or $x \in C-A$, so that $x \in(B-A) \cup(C-A)$, and therefore $(B \cup C)-A \subseteq(B-A) \cup(C-A)$.

4 Suppose $f(x)$ is strictly increasing on \mathbb{R}, and let $x, y \in \mathbb{R}$ with $x<y$. Then $0<f(x)<f(y)$, whence comes $0<1 / f(y)<1 / f(x)$ and then $0<g(y)<g(x)$. Thus g is strictly decreasing.

Conversely, if g is assumed strictly decreasing, then for any $x, y \in \mathbb{R}$ with $x<y$ we find that $0<g(y)<g(x)$, hence $0<1 / f(y)<1 / f(x)$, and so $0<f(x)<f(y)$. Thus f is strictly increasing.

The codomain of f is given to be $(0, \infty)$, so $f(x) \neq 0$ for all $x \in \mathbb{R}$, and hence $g(x)$ is defined for all $x \in \mathbb{R}$.

5a $\quad f(S)=\{f(-1), f(0), f(2), f(4), f(7)\}=\{8,5,-1,-7,-16\}$
5b $\quad f(S)=\{0,1,4,12\}$
6 With backward substitution,

$$
\begin{aligned}
a_{n} & =a_{n-1}-n=\left[a_{n-2}-(n-1)\right]-n=a_{n-2}-2 n+1 \\
& =\left[a_{n-3}-(n-2)\right]-2 n+1=a_{n-3}-3 n+(1+2) \\
& =\left[a_{n-4}-(n-3)\right]-3 n+3=a_{n-4}-4 n+(1+2+3) \\
& \vdots \\
& =a_{n-k}-k n+\sum_{i=1}^{k-1} i=\cdots=a_{0}-n^{2}+\sum_{i=1}^{n-1} i \\
& =4-n^{2}+\frac{n(n-1)}{2}=4-\frac{n+n^{2}}{2} .
\end{aligned}
$$

7 We have

$$
\sum_{i=1}^{3}[2 i+(2 i-3)+(2 i-6)+(2 i-9)]=\sum_{i=1}^{3}(8 i-18)=-6
$$

8 A 3×3 matrix results:

$$
\left[\begin{array}{ccc}
-5 a & a^{2}-c & a b-1 \\
0 & b c & b \\
15 & 2 c-3 a & 2-3 b
\end{array}\right]
$$

9 Just show with long division that $1013 \div 24$ has remainder 5 . Thus it will be 5 hours after 17:00, or 22:00.

10 We need $0 \leq c \leq 16$ such that $c=a-4 b+17 \ell$ for some $\ell \in \mathbb{Z}$, and since $a=10+17 j$ and $b=7+17 k$ for some $j, k \in \mathbb{Z}$, we have $c=-18+17(j-4 k+\ell)$. Now, $0 \leq c \leq 16$ implies $\frac{18}{17} \leq j-4 k+\ell \leq 2$, which forces $j-4 k+\ell=2$. To satisfy this we can choose $j=k=0$ and $\ell=2$, and thus $c=16$.

11a No work required: 11111010110100001001.
11b With some work: 1010000011.
$12(504454)_{8}$
13a $\quad 6174=2 \cdot 3^{2} \cdot 7^{3}$ and $7800=2^{3} \cdot 3 \cdot 5^{2} \cdot 13$.
$\mathbf{1 3 b} \operatorname{gcd}(6174,7800)=6$ and $\operatorname{lcm}(6174,7800)=2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 7^{3} \cdot 13=8,026,200$.

