Math 121 Exam \#1 Key (Summer 2023)

1a If I did not buy a lottery ticket this week, then I did not win the million dollar jackpot.
1b I did not buy a lottery ticket this week, or I bought a lottery ticket this week and I won the million dollar jackpot.

2a $r \leftrightarrow(q \vee p)$
2b $\quad(p \wedge q) \rightarrow r$
3 The answer column is in red.

p	q	$(p \rightarrow q)$	\oplus	$(p$	\leftrightarrow	$\neg q)$
1	1	1	1	0	0	
1	0	0	1	1	1	
0	1	1	0		1	0
0	0	1	1		0	1

4 Let p: The server is down, q: Browsers can view the website, r: Browsers can enter the forum. The specifications are $p \rightarrow \neg q, q \rightarrow r, \neg r \rightarrow \neg p$. All these specifications can be made simultaneously true if we assume, for instance, that p is false, q is false, and r is true. There may be other possibilities.

5 I'm just showing the answer columns here. Since the truth values match in all four cases, the statements are equivalent.

p	q	$p \leftrightarrow q$	$\neg p \rightarrow \neg q$
1	1	1	1
1	0	0	0
0	1	0	0
0	0	1	1

6a Any animal that is a rabbit hops.
6b There is an animal that hops but is not a rabbit. Or: There is an animal that is not a rabbit and hops.

7a Let $C(x)=$ " x is in the correct place" and $E(x)=" x$ is in excellent condition." Domain for x will be all tools. Then: $\forall x(C(x) \wedge E(x))$.

7b Like part (a), only now the domain for x will be your tools. Then: $\forall x(\neg C(x)) \wedge \exists x E(x)$, or equivalently $\neg \exists x C(x) \wedge \exists x E(x)$

8a $\neg \forall x I(x)$ or $\exists x(\neg I(x))$.
8b $\exists x[\neg I(x) \wedge \forall y(\neg I(y) \rightarrow x=y)]$

8c $\exists x[I(x) \wedge \forall y(x \neq y \rightarrow \neg T(x, y))]$
9 Disjunctive syllogism
10 Let a and b be rational numbers. Then there exist integers $p, q \neq 0, r, s \neq 0$ such that $a=p / q$ and $b=r / s$. Now,

$$
a b=\frac{p}{q} \cdot \frac{r}{s}=\frac{p r}{q s},
$$

and since $p r$ and $q s$ are integers, with $q s \neq 0$, we conclude that $a b$ is a rational number.
11 Let x be irrational, and let $r \neq 0$ be rational, so that $r=m / n$ for integers $m, n \neq 0$. Suppose $r x$ is rational. Then $r x=p / q$ for integers p and q, with $q \neq 0$. Now,

$$
x=\frac{p}{r q}=\frac{n p}{m q},
$$

where $n p$ and $m q \neq 0$ are integers, and so x is rational. This is a contradiction, and therefore $r x$ must be irrational.

