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1
Logic

1.1 – Statements

We take the concept of a sentence to be understood, and define the four principal types of
sentences.

Definition 1.1. A sentence that makes a declaration or assertion is declarative. A sentence
that asks a questions is interrogative. A sentence that gives a command or instructions is
imperative. A sentence that makes an emotional exclamation is exclamatory.

A statement is a declarative sentence that may be judged to be true or false, but not both.
The terms true and false are called truth values, and symbolic logic, which is the study of
logic using symbols rather than words, denotes the value “true” by either the symbol T or 1,
and the value “false” by F or 0. Certainly a question such as “What time is it?” cannot be
meaningfully assigned a truth value, nor can a command such as “Go forth and conquer” or an
exclamation of surprise such as “What the deuce!”

An exclamatory sentence such as “What a horrible ordeal!” may appear to be declarative,
and perhaps even be a statement, but the simple fact is that what is being expressed by such a
sentence is strictly a matter of opinion. One hour in a crawling traffic jam may seem a little
thing to a pioneer who crossed the North American continent in a covered wagon.

Example 1.2. The sentence “A gluon mediates the strong force interaction between quarks”
is declarative, and it is also a statement since it is true according to the Standard Model of
particle physics.

The sentence “Millicent sold some pomegranates to what’s-his-name” is declarative, but
it is not a statement since the truth or falseness of the sentence hinges on who, precisely, is
“what’s-his-name.”

The sentence “He told me he understood quantum field theory” is declarative, but it is not
a statement since the truth or falseness of the sentence depends on to whom the pronoun “he”
is referring.

The sentence “This sentence is false” is declarative, but it is not a statement since assigning
it either truth value leads to a contradiction: If the sentence is taken to be true, then it must
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be false; but if it is taken to be false, then it must be true. This is a version of what is called
the liar’s paradox. ■

Example 1.3. The equation 2x+ 6 = 0 represents the declarative sentence “2x+ 6 is equal
to 0.” It is not a statement since the truth or falseness of the sentence depends on what is
substituted for the variable (as the term is used in algebra) denoted by x. Indeed, the sentence
is true only when x = −3, otherwise it is false. ■

An open sentence is a declarative sentence whose truth or falseness depends on the values
of one or more variables contained in the sentence.
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3
Methods of Proof

3.1 – Logical Quantifiers

In Chapter 1 we began to develop a system of symbolic logic, but stopped short of its
completion in order to spend Chapter 2 becoming acquainted with aspects of set theory. Now set
theory will facilitate our further development of symbolic logic to include statements featuring
terms like for all, there exists, some, none, and so on. Such terms indicate the presence of what
is called a logical quantifier.

Definition 3.1. Let S be a set, and let P (x) be an open sentence over domain S. The universal
quantification of P (x) is “P (x) for all x in S,” which is written as ∀x ∈ S P (x). The symbol
∀ denotes the universal quantifier, which is read as “for all.”

The expression ∀x ∈ S P (x) is often read as “For all x ∈ S, P (x),” with the word “all”
readily replaced by “every” or “each.” We may even write ∀x ∈ S P (x) as an implication: “If
x ∈ S, then P (x).” We consider ∀x ∈ S P (x) to be a true statement only if P (x) is true for
every x ∈ S.

Example 3.2. For an odd integer n, define the open sentence P (n) : 7n+ 4 is odd. Letting
S be the set of odd integers, we may certainly express the statement ∀n ∈ S P (n) as “For all
n ∈ S P (n),” but in plainer English we may also write

For every odd integer n, 7n+ 4 is odd,

or

If n is an odd integer, then 7n+ 4 is odd.

Other variations are possible. ■

Definition 3.3. Let S be a set, and let P (x) be an open sentence over domain S. The
existential quantification of P (x) is “There exists some x in S such that P (x),” which is
written as ∃x ∈ S P (x). The symbol ∃ denotes the existential quantifier, which is read as
“there exists.”
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The expression ∃x ∈ S P (x) is often read as “There is some x ∈ S such that P (x),” or “For
some x ∈ S, P (x),” or “For at least one x ∈ S, P (x).” We consider ∃x ∈ S P (x) to be a true
statement only if P (x) is true for at least one x ∈ S.

Any statement involving at least one quantifier is known as a quantified statement. A
quantified statement of the form ∀x ∈ S(□), where either an open sentence or another quantified
statement may be substituted for □, is called a universal statement, while ∃x ∈ S(□) is an
existential statement. Whatever is substituted for □ in either ∀x ∈ S(□) or ∃x ∈ S(□) is
said to lie in the scope of the quantifier written to the left of □.

Example 3.4. Let A be the set of all animals, and define the open sentences

F (x) : x is furry

H(x) : x hops

We may translate the quantified statement ∃x ∈ A(F (x)∧H(x)) in the following ways, in order
of increasingly plain English:

There exists an animal x such that F (x) and H(x).

There is an animal x such that x is furry and x hops.

There is an animal that is furry and hops.

Some animal is furry and hops.

To be sure, other variations are possible. ■

Definition 3.5. Let Q1 and Q2 be two quantified statements involving a single variable x. If
the truth values of Q1 and Q2 are the same for any choice of domain S for x, then Q1 and Q2

are said to be logically equivalent (or simply equivalent), and we write Q1 ≡ Q2.

The negation of a quantified statement arises often in mathematical inquiries, and the
following theorem gives two equivalencies involving such an operation.

Theorem 3.6. For any open sentence P (x) over domain S,

1. ¬(∀x ∈ S P (x)) ≡ ∃x ∈ S (¬P (x)).
2. ¬(∃x ∈ S P (x)) ≡ ∀x ∈ S (¬P (x)).

Proof.
Proof of (1). To state ¬(∀x ∈ S P (x)) means to say “It is not the case that ∀x ∈ S P (x),” or
“It is not the case that P (x) for every x ∈ S.” Thus there must exist at least one x ∈ S for
which P (x) is not the case, which we may state as: “There exists x ∈ S such that ¬P (x).” This
is precisely what ∃x ∈ S (¬P (x)) states, and so the quantified statements ¬(∀x ∈ S P (x)) and
∃x ∈ S (¬P (x)) state the same thing.

Proof of (2). We could accomplish the proof in the same manner as in part (1), but will instead
illustrate a different strategy. Substitute ¬P (x) for P (x) in the equivalency in part (1) to obtain

¬(∀x ∈ S (¬P (x))) ≡ ∃x ∈ S (¬(¬P (x))).
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We recall that ¬(¬P ) ≡ P in general, and so obtain

¬(∀x ∈ S (¬P (x))) ≡ ∃x ∈ S P (x).

Negating the statements on both sides of this equivalency yields

¬(¬(∀x ∈ S (¬P (x)))) ≡ ¬(∃x ∈ S P (x)).

Once again we employ the equivalency ¬(¬P ) ≡ P to arrive at

∀x ∈ S (¬P (x)) ≡ ¬(∃x ∈ S P (x)). (3.1)

Of course, Q1 ≡ Q2 if and only if Q2 ≡ Q1, and so from (3.1) we readily obtain the second
equivalency stated in the theorem. ■

Example 3.7. Using an existential quantifier, state the negation of the statement “For every
rational number r, the number 1/r is rational.”

Solution. Certainly one way the negation of the given statement may be written is

It is not the case that, for every rational number r, the number 1/r is rational,

but this does not feature an existential quantifier. With part (1) of Theorem 3.6 we may write
the negation as

There exists a rational number r such that the number 1/r is not rational.

Substituting “is” for “exists” is an acceptable alternative. ■

A quantified statement frequently features more than one quantifier. For instance, given
variables x and y with domains S and T , respectively, along with an open sentence P (x, y), we
may have

∀x ∈ S(∃y ∈ T P (x, y)). (3.2)

This is an example of nested quantifiers, when a quantified statement is in the scope of
another quantifier. The more usual way that (3.2) is written is

∀x ∈ S ∃y ∈ T P (x, y), (3.3)

which may be read as “For each x ∈ S there exists y ∈ T such that P (x, y).” We may substitute
“all” or “every” for “each” without changing the meaning of the statement. We find the negation
of (3.3) using Theorem 3.6 twice:

¬(∀x ∈ S ∃y ∈ T P (x, y)) ≡ ¬(∀x ∈ S(∃y ∈ T P (x, y)))

≡ ∃x ∈ S(¬(∃y ∈ T P (x, y)))

≡ ∃x ∈ S(∀y ∈ T (¬P (x, y)))

≡ ∃x ∈ S ∀y ∈ T (¬P (x, y))

(3.4)
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Similarly we have

¬(∃x ∈ S ∀y ∈ T P (x, y)) ≡ ∀x ∈ S ∃y ∈ T (¬P (x, y))). (3.5)

Developing strategies for determining the truth value of a quantified statement, including
statements such as (3.3) that possess nested quantifiers, will occupy all sections of this chapter
after this one.

Example 3.8. State the negation of the statement “For every integer m there exists an integer
n such that |m− 2n+ 1| ≤ 2.”

Solution. Defining the open sentence P (m,n) : |m− 2n+ 1| ≤ 2, symbolically the statement
is ∀m ∈ Z ∃n ∈ Z P (m,n). With the equivalency (3.4) we find the negation of this statement
to be, symbolically, ∃m ∈ Z ∀n ∈ Z(¬P (m,n)). Since ¬P (m,n) states that |m − 2n + 1| is
not less than or equal to 2, or in other words ¬P (m,n) is |m − 2n + 1| > 2, we may write
∃m ∈ Z ∀n ∈ Z(¬P (m,n)) as

∃m ∈ Z ∀n ∈ Z(|m− 2n+ 1| > 2),

or in words,

There exists an integer m such that, for all integers n, |m− 2n+ 1| > 2.

Alternatively we may write

There is an integer m such that |m− 2n+ 1| > 2 for every integer n.

This last version may be best since it requires minimal punctuation. ■
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3.3 – Proof By Contraposition

We recall that the contrapositive of a conditional statement is logically equivalent to the
conditional statement:

P → Q ≡ ¬Q→ ¬P.

From this equivalency we readily find that

∀x ∈ S(P (x) → Q(x)) ≡ ∀x ∈ S(¬Q(x) → ¬P (x)),

and so to prove the universal conditional statement ∀x ∈ S(P (x) → Q(x)) we may just as well
prove ∀x ∈ S(¬Q(x) → ¬P (x)). This technique is called proof by contraposition. Indeed,
it is often far easier to prove the contrapositive of a conditional statement than the statement
itself.

Example 3.9. Let n be an integer. Prove that if 9n− 5 is even, then n is odd.

Preliminaries. The statement to prove is: “For any integer n, if 9n− 5 is even then n is odd.”
That is,

∀n ∈ Z((9n− 5 is even) → (n is odd)). (3.6)

To prove (3.6), we prove the contrapositive statement

∀n ∈ Z((n is not odd) → (9n− 5 is not even)).

Of course, an integer that is not odd or even must be even or odd, respectively, so we may
rephrase the contrapositive statement as follows:

∀n ∈ Z((n is even) → (9n− 5 is odd)). (3.7)

Using the fact that pq, p + q, and p − q are integers whenever p and q are integers, we now
prove statement (3.7). ■

Proof. Let n ∈ Z be arbitrary, and suppose that n is even. Then n = 2k for some k ∈ Z, so
that

9n− 5 = 9(2k)− 5 = 18k − 5 = (18k − 6) + 1 = 2(9k − 3) + 1.

Thus 9n− 5 = 2ℓ+ 1 for integer ℓ = 9k − 3, which shows that 9n− 5 is odd. This proves (3.7),
and therefore the logically equivalent statement (3.6) is proven. ■

Example 3.10. Prove that if the product of two positive real numbers is greater than 100,
then at least one of the numbers is greater than 10.

Preliminaries. To say at least one of two numbers a and b is greater than 10 is to say that
either a > 10 or b > 10 must be the case. The statement to prove is: “For any positive real
numbers a and b, if ab > 100, then either a > 10 or b > 10.” Letting R+ denote the set of
positive real numbers, the statement to prove is

∀a ∈ R+ ∀b ∈ R+((ab > 100) → ((a > 10) ∨ (b > 10))). (3.8)
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To prove (3.8), we prove the contrapositive statement. Since ¬(ab > 100) ≡ (ab ≤ 100) and

¬((a > 10) ∨ (b > 10)) ≡ (a ≤ 10) ∧ (b ≤ 10)

the contrapositive is

∀a ∈ R+ ∀b ∈ R+(((a ≤ 10) ∧ (b ≤ 10)) → (ab ≤ 100)). (3.9)

To prove (3.9) we use the following fact from algebra: If real numbers u, v, x, and y are such
that 0 < u ≤ v and 0 < x ≤ y, then ux ≤ vy.1 ■

Proof. Let a ∈ R+ and b ∈ R+ be arbitrary, and suppose a ≤ 10 and b ≤ 10. Since a > 0 and
b > 0, it follows that ab ≤ (10)(10), and hence ab ≤ 100. This proves (3.9), and therefore the
equivalent statement (3.8) is proven. ■

1Note that 0 < u ≤ v and 0 < x ≤ y imply 1 ≤ v/u and 1 ≤ y/x, so that 1 ≤ (v/u)(y/x), and therefore
ux ≤ vy as claimed. Now all that the reader must believe is that whenever s ≥ 1 and t ≥ 1, then st ≥ 1!
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3.4 – Proof By Cases

For the next example recall that, given two sets A and B, to prove that A = B is usually
accomplished by showing both A ⊆ B and B ⊆ A. It is common to call, say, the expression
A ⊆ B a containment, in which case B ⊆ A is referred to as the reverse containment.

Example 3.11. Let A and B be sets. Prove that (A−B) ∪ (B − A) = (A ∪B)− (A ∩B).

Preliminaries. We will state the result to be proven as follows: “For any sets A and B,
(A−B)∪ (B −A) = (A∪B)− (A∩B).” The proof will require showing both the containment

(A−B) ∪ (B − A) ⊆ (A ∪B)− (A ∩B) (3.10)

and the reverse containment

(A ∪B)− (A ∩B) ⊆ (A−B) ∪ (B − A). (3.11)

To prove (3.10) we demonstrate that if x ∈ (A−B) ∪ (B − A), then it necessarily follows that
x ∈ (A ∪B)− (A ∩B). To prove (3.11) we demonstrate that if x ∈ (A ∪B)− (A ∩B), then it
necessarily follows that x ∈ (A−B) ∪ (B − A). ■

Proof. We show (3.10) to start. Let x ∈ (A − B) ∪ (B − A). Then either x ∈ A − B or
x ∈ B − A. We consider these two cases separately.

Case 1. Suppose x ∈ A− B. Then x ∈ A and x /∈ B. Because x ∈ A we have x ∈ A ∪ B,
and because x /∈ B we have x /∈ A ∩B. Thus x ∈ (A ∪B)− (A ∩B).

Case 2. Suppose x ∈ B − A. Then x ∈ B and x /∈ A. Because x ∈ B we have x ∈ A ∪ B,
and because x /∈ A we have x /∈ A ∩B. Thus x ∈ (A ∪B)− (A ∩B).

In both cases we conclude that x ∈ (A ∪B)− (A ∩B), and so (3.10) is proven.
Now we show the reverse containment (3.11). Let x ∈ (A ∪B)− (A ∩B). Then x ∈ A ∪B

and x /∈ A ∩B, so that either x ∈ A or x ∈ B, but not both. Again we consider two cases.
Case 1. Suppose x ∈ A. Then x /∈ B since x /∈ A ∩ B, so that x ∈ A − B and hence

x ∈ (A−B) ∪ (B − A).
Case 2. Suppose x ∈ B. Then x /∈ A since x /∈ A ∩ B, so that x ∈ B − A and hence

x ∈ (A−B) ∪ (B − A).
In both cases we conclude that x ∈ (A−B) ∪ (B − A), and so (3.11) is proven. Therefore

(A−B) ∪ (B − A) = (A ∪B)− (A ∩B). ■
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4
Relations and Functions

4.1 – Relations

Definition 4.1. Let A and B be sets. A binary relation from A to B is a subset of A×B.
A binary relation on A is a subset of A× A. To write aR b or a ∼ b means (a, b) ∈ R. To
write a ̸R b or a ̸∼ b means (a, b) /∈ R.

Since binary relations are the only kind of relation we will consider, we will refer to any
binary relation as simply a relation.

Since the empty set ∅ is a subset of A×B for any sets A and B, it is clear from the definition
that ∅ is a relation from A to B (though not a very interesting one). In general ∅ is called the
empty relation.

Definition 4.2. Let R be a relation on A. If xRx for all x ∈ A, then R is reflexive. If, for
all x, y ∈ A, yRx whenever xR y, then R is symmetric. If, for all x, y, z ∈ A, xR z whenever
xR y and yR z, then R is transitive. If, for all x, y ∈ A, x = y whenever xR y and yRx, then
R is antisymmetric.

Thus a relation R on A is reflexive if ∀x ∈ A(x ∼ x), symmetric if

∀x ∈ A ∀y ∈ A(x ∼ y → y ∼ x),

transitive if
∀x ∈ A ∀y ∈ A ∀z ∈ A((x ∼ y ∧ y ∼ z) → x ∼ z),

and antisymmetric if
∀x ∈ A ∀y ∈ A((x ∼ y ∧ y ∼ x) → x = y).

As we have noted in §3.1, because ∀x ∈ S(P (x)) is logically equivalent to ∀x(x ∈ S → P (x)),
we find the statement ∀x ∈ S(P (x)) to be (vacuously) true whenever S = ∅. As a consequence,
any relation R on ∅ must be reflexive, symmetric, transitive, and antisymmetric (indeed R
must itself be the empty relation ∅). What is more, the empty relation ∅ on any nonempty set
A is symmetric, transitive, and antisymmetric, but is not reflexive.
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4.2 – Equivalence Relations

Definition 4.3. A relation R on a set A is an equivalence relation if R is reflexive, symmetric,
and transitive.

Theorem 4.4. If R is an equivalence relation on A and x, y ∈ A, then [x] = [y] if and only if
xR y.

Proof. Suppose [x] = [y]. Since R is reflexive we have xRx, so that x ∈ [x], and hence x ∈ [y].
Because [y] = {a ∈ A : aR y}, we conclude that xR y. Therefore if [x] = [y], then xR y.

For the converse, suppose that xR y. Let a ∈ [x], so that aRx. Since R is transitive, from
aRx and xR y we obtain aR y, which implies a ∈ [y] and hence [x] ⊆ [y].

Now let a ∈ [y], so that aR y. Since R is symmetric, from xR y we obtain yRx, and
then aR y and yRx imply that aRx since R is transitive. That is, a ∈ [x], so that [y] ⊆ [x].
Therefore if xR y, then [x] = [y]. ■

Theorem 4.5. If R is an equivalence relation on A ̸= ∅, then P = {[a] : a ∈ A} is a partition
of A.

Proof. Suppose R is an equivalence relation on A ̸= ∅. Since R is reflexive, we find that x ∈ [x]
for all x ∈ A, and so all elements of P are nonempty.

Suppose [x], [y] ∈ P with [x] ̸= [y]. Then x ̸Ry by Theorem 4.4. Let z ∈ [x]∩ [y] be arbitrary.
Then zR x and zR y. Since R is symmetric it follows that xR z and zR y, and hence xR y
by the transitive property. But this contradicats x ̸Ry. We conclude that [x] ∩ [y] = ∅, and
therefore the elements of P are mutually disjoint.

Let x ∈
⋃
P, where by definition

⋃
P =

⋃
a∈A[a]. Then there exists some a ∈ A such that

x ∈ [a], and since [a] ⊆ A, it follows that x ∈ A and hence
⋃
P ⊆ A. Conversely, if x ∈ A, then

the fact that xRx implies x ∈ [x], so that x ∈
⋃
P and hence A ⊆

⋃
P. Therefore A =

⋃
P,

and P is a partition of A. ■
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4.5 – Cardinalities of Sets

Theorem 4.6. If A and B are denumerable sets and A ∩B = ∅, then A ∪B is denumerable.

Proof. Suppose A and B are disjoint denumerable sets. Then there exist bijections f : N → A
and g : N → B. Define h : Z → A ∪B by

h(n) =

{
f(−n) if n ≤ −1

g(n+ 1) if n ≥ 0

Let x ∈ A ∪B. If x ∈ A, then f(k) = x for some k ≥ 1 since f is onto, and since −k ≤ −1
we have h(−k) = f(k) = x. If x ∈ B, then g(k) = x for some k ≥ 1 since g is onto, and since
k − 1 ≥ 0 we have h(k − 1) = g(k) = x. Hence h is onto.

Suppose h(k) = h(m) = x, so that either x ∈ A or x ∈ B, but not both since A and B are
disjoint. If x ∈ A, then by the definition of h we have h(k) = f(−k) and h(m) = f(−m), so
that f(−k) = f(−m), and thus k = m since f is one-to-one. If x ∈ B, then by the definition of
h we have h(k) = g(k + 1) and h(m) = g(m+ 1), so that g(k + 1) = g(m+ 1), and thus k = m
since g is one-to-one. Hence h is one-to-one, and we conclude that h is a bijection.

Finally, since Z is denumerable there is a bijection φ : N → Z, and then h ◦ φ : N → A ∪B
is a bijection since the composition of two bijections is a bijection. Therefore |A ∪ B| = |N|,
and A ∪B is denumerable. ■
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7
Enumerative Combinatorics

7.3 – The Pigeonhole Principle

Recall ye olde ceiling function ⌈·⌉ : R → Z, defined by

⌈x⌉ = min{n ≥ x : n ∈ Z}
for each x ∈ R, with the property that x ≤ ⌈x⌉ < x+ 1.

Theorem 7.1 (Pigeonhole Principle). If n objects are placed in k boxes, then at least one
box contains at least ⌈n/k⌉ objects.

Proof. Suppose n objects are placed in k boxes. Assume it is not the case that at least one
box contains at least ⌈n/k⌉ objects. Letting Bi be the set of objects in the ith box, then
|Bi| ≤ ⌈n/k⌉ − 1 for each 1 ≤ i ≤ k. Now, using the property that x ≤ ⌈x⌉ < x + 1 for any
x ∈ R, we have

k∑
i=1

|Bk| ≤
k∑

i=1

(
⌈n/k⌉ − 1

)
<

k∑
i=1

(
(n/k + 1)− 1

)
=

k∑
i=1

(n/k) = n.

Thus the total number of objects placed in the k boxes is less than n, which is a contradiction.
Therefore at least one box contains at least ⌈n/k⌉ objects. ■

Theorem 7.2 (General Pigeonhole Principle). Let S ̸= ∅ be a finite set with partition
{S1, S2, . . . , Sk}, and suppose ni ∈ N is such that |Si| ≥ ni for each 1 ≤ i ≤ k. Then for any
A ⊆ S with

|A| ≥ 1 +
k∑

i=1

(ni − 1)

there exists some 1 ≤ i ≤ k such that |A ∩ Si| ≥ ni.

Example 7.3. Each item in a fruit basket is an apple or banana or tangerine or pear or lime.
What is the minimum number of pieces of fruit that must be in the basket to guarantee that
there is at least one apple, or at least two bananas, or at least three tangerines, or at least four
pears, or at least five limes?



14

Solution. Let S be the set of all pieces of fruit in a basket, so if the basket contains, say, three
apples, seven bananas, five tangerines, nine pears, and four limes, then |S| = 3+7+5+9+4 = 28.
In particular this means that we consider any two pieces of fruit, including two pieces of the
same kind (such as two limes) as being different objects. Let S1 be the set of apples in a basket,
S2 the set of bananas, S3 the set of tangerines, S4 the set of pears, and S5 the set of limes. We
emphasize that, at this stage, {Si : 1 ≤ i ≤ 5} is not necessarily a partition of S, since it is not
required that a fruit basket contain all five kinds of fruit, and therefore it may be that Si = ∅
for some i. Our problem is to determine the minimum positive value of |S| in order to guaratee
that one of the following is true: |S1| ≥ 1, or |S2| ≥ 2, or |S3| ≥ 3, or |S4| ≥ 4, or |S5| ≥ 5; that
is, |Si| ≥ i for at least one value 1 ≤ i ≤ 5.

We employ the general pigeonhole principle starting with a fruit basket whose associated set S
is such that |Si| ≥ i for every 1 ≤ i ≤ 5. For such a fruit basket we have |S| ≥ 1+2+3+4+5 = 15,
but as it turns out we do not need a basket with at least 15 pieces of fruit to ensure that |Si| ≥ i
is true for at least one value of i. Setting ni = i for each 1 ≤ i ≤ 5, the general pigeonhole
principle states that if A ⊆ S is such that

|A| ≥ 1 +
5∑

i=1

(i− 1) = 1 + (0 + 1 + 2 + 3 + 4) = 11,

then |A ∩ Si| ≥ i for at least one 1 ≤ i ≤ 5. This tells us that in any “subbasket” A consisting
of 11 pieces of fruit chosen from the “basket” S of at least 15 pieces of fruit, there must be at
least i pieces of fruit from the set Si that are also in A. Hence the “subbasket” A must contain
at least 1 apple, or at least 2 bananas, or at least 3 tangerines, or at least 4 pears, or at least 5
limes, precisely as desired. Therefore, in order to be assured of having at least 1 apple, or at
least 2 bananas, or at least 3 tangerines, or at least 4 pears, or at least 5 limes, a fruit basket
must contain a minimum of 11 pieces of fruit.

This answer can be understood in common sense terms by imagining drawing pieces of fruit
from a vast cargo container filled with apples, bananas, tangerines, pears, and limes. What
is the minimum number that must be drawn to be guaranteed of getting one apple, or two
bananas, or three tangerines, or four pears, or five limes? We consider the worst-case scenario:
drawing one piece of fruit after another and getting no apples, one banana, two tangerines, three
pears, and four limes. This amounts to 10 pieces of fruit drawn, and so the 11th piece of fruit
drawn cannot fail to satisfy one of our five criteria. ■
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8
Discrete Probability

8.1 – An Introduction to Discrete Probability

Theorem 8.1. For n ≥ 2 let S1, . . . , Sn be sample spaces with associated probability
functions p1, . . . , pn, respectively, and let S = S1 × · · · × Sn. For any E = E1 × · · · × En ⊆ S
define

p(E) =
n∏

i=1

pi(Ei) = p1(E1)p2(E2) · · · pn(En).

Then p is a probability function on S.
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10
Graph Theory

10.1 – Types of Graphs

Undirected Graphs

By a graph G is meant a kind of discrete mathematical structure consisting of a set V (G)
of vertices and a set E(G) of edges. Thus G is characterized as an ordered pair (V (G), E(G)),
and we write G = (V (G), E(G)). If we write simply G = (V,E), as we frequently will in
situations when the vertex or edge set of G must be referred to a great many times in some
discussion, then it’s understood that V and E are the vertex set and edge set of G, respectively.

Each edge e ∈ E(G) is associated with one or two vertices in V (G), called the endpoints of
e. If e has endpoints u, v ∈ V (G), then e is said to join u and v. To say a vertex u is joined
to (or adjacent to) a vertex v means there exists an edge having u and v as endpoints.2 We
say an edge e is incident to a vertex v if v is an endpoint of e. If the endpoints of e are both v,
then e is called a loop at v. We adopt the view that every edge has two endpoints, with a loop
being an edge whose endpoints are both associated with (one might say “located at”) the same
vertex.

An edge e is an undirected edge if its endpoints at vertices u and v are not ordered, which
is to say there is no thought of e “starting” at one vertex and “ending” at the other. We say a
graph G is an undirected graph if all of its edges are undirected. If e ∈ E(G) has endpoints u
and v, and there is no other edge in E(G) having the same endpoints, then e may be identified
with the (unordered) set {u, v}, and in accordance with custom any one of the symbols {u, v},
{v, u}, vu, or uv (instead of the less descriptive symbol e) may be used to denote the edge. If it
so happens that u = v, so that e is a loop at v, then e may be denoted by {v} or vv so long
as there is not a second loop at v that must also be referred to in a discussion. It will be our
practice to treat the terms “undirected graph” and “graph” as synonymous, a point we shall
elaborate on later in the section.

Two edges in a graph G are parallel if they have the same endpoints, and any maximal
set of parallel edges (which is a set containing all the edges that join two particular vertices)
is called a multi-edge. If G has parallel edges joining vertices u, v ∈ V (G), then the symbol

2We may also say that u is connected to v, or that u and v are connected, but we shall see later that these
particular uses of the term “connected” are special cases of a more general idea.
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{u, v} or uv is taken to denote a multi-edge; that is, {u, v} or uv denotes the set of all edges
in G having u and v as endpoints, rather than any one particular edge with endpoints u and
v. We generally wish to be able to distinguish any one edge in a graph from all others, which
is the so-called “edges with own identity” approach. When every edge in a graph has its own
identity—its own unique symbol—then we need not resort to multisets or fret about ambiguities
arising. If vertices u and v have, say, k edges joining them, we might denote the edges by
e1, e2, . . . , ek. These would be k distinct objects belonging to the set E(G).

An incidence function for a graph G is a function ι that maps each edge e ∈ E(G) to
the set of vertices that e is incident to (i.e. its endpoint set). Thus if e has endpoints u and v,
then ι(e) = {u, v} = uv. More formally, then, a graph G may be characterized as an ordered
triple (V (G), E(G), ι), with the incidence function ι being the informant that apprises us what
endpoints each e ∈ E(G) possesses. It will be our custom to present a graph G as an ordered
triple (V,E, ι), as opposed to a pair (V,E), if there is need for an incidence function ι in a
particular situation, or in order to make a precise definition.

Without vertices there can be no edges, in which case the empty graph results. A graph is
nonempty if it has at least one vertex, and though a graph with vertices does not necessarily
have to have edges, it would be a poor graph indeed that did not possess at least one. A trivial
graph is a graph possessing one vertex and no edges. An infinite graph is a graph consisting
of an infinite number of vertices or edges, and a finite graph has a finite number of vertices
and edges. We shall only make a study of finite graphs.

It is natural to draw graphs by depicting vertices as points and edges as line segments or
curves that join the points. Such a depiction is called a drawing of a graph. Every figure in
this section features one or more drawings of graphs, sometimes with the vertices labeled. Edges
may also be labeled, and an edge in a directed graph will have an arrow somewhere along its
length indicating it direction.

Two graphs G1 and G2 are equal if V (G1) = V (G2) and E(G1) = E(G2), in which case we
write G1 = G2. We give now definitions for three types of undirected graph, each type a subset
of the next type.

Definition 10.1. A simple graph is an undirected graph without loops or parallel edges.

Thus if G = (V,E) is a simple graph, then for any u, v ∈ V with u ̸= v there exists at most
one edge e ∈ E with endpoints u and v. If such an edge e exists, then it may be denoted by

a

b c

d

e

G

w

y u

v

x

H

Figure 1. Drawings of two simple undirected graphs. Or are there really two?
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the symbol {u, v} or uv (instead of e) without ambiguity. The prohibition against loops means
there exists no e ∈ E such that e = {v} for some v ∈ V . If ι is an incidence function for G,
so that G = (V,E, ι), then for each edge {u, v} ∈ E we have ι({u, v}) = {u, v}. Indeed, the
incidence function of a simple graph is an identity function when edges are represented as sets
of endpoints.

Example 10.2. In Figure 1 are drawings of two different simple graphs: G = (V,E) at left and
H = (W,F ) at right. But are these two graphs truly different mathemtically, in the way they
join their respective vertices with edges? If the edges {y, x} and {u, x} in H were replaced with
line segments, and v moved a bit to the right while w is moved a bit to the left, the drawing of
H could be made identical to G save for the labeling of the vertices. Indeed, G has vertex set
V = {a, b, c, d, e} and edge set

E =
{
{a, b}, {b, c}, {c, d}, {d, e}, {a, e}, {b, e}, {c, e}

}
,

while H has vertex set W = {u, v, w, x, y} and edge set

F =
{
{w, y}, {y, u}, {u, v}, {v, x}, {w, x}, {y, x}, {u, x}

}
;

but if we were to relabel the vertices u, v, w, x, y of H as c, d, a, e, b, respectively, after
making the aforementioned edge and vertex adjustments to the drawing of H, we could make
the drawing of H perfectly identical to the drawing of G. In §10.4 we shall make precise the idea
that two graphs with very different-looking drawings may be the same, or “isomorphic.” ■

Definition 10.3. A multigraph is an undirected graph that may have parallel edges but no
loops.

A more formal definition presents a multigraph as an ordered triple G = (V,E, ι), with
incidence function ι : E → {{u, v} : u, v ∈ V and u ≠ v} having a codomain that excludes any
possibility of loops. Edges e1, e2 ∈ E are parallel edges having endpoints u and v if and only if
ι(e1) = ι(e2) = {u, v}. The multi-edge associated with u and v is ι−1({u, v}), the inverse image
of {u, v} under ι, and so in particular e1, e2 ∈ ι−1({u, v}). All the edges in ι−1({u, v}) are edges
in E whose endpoints are located at vertices u and v, with u ̸= v since a multigraph can have
no loops.

v1 v2

v3

v4

v5

Figure 2. A multigraph. No edge is incident to vertex v5.
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Example 10.4. Figure 2 illustrates a multigraph G = (V,E), with V = {v1, v2, v3, v4, v5} and
E consisting of 10 edges. Letting ekij denote the kth edge joining vi to vj, we could write

E =
{
e112, e

2
12, e

3
12, e

1
13, e

2
13, e

1
23, e

2
23, e

3
23, e

4
23, e

1
14

}
.

With this sort of labeling scheme we could characterize the multigraph as G = (V,E, ι), where
the incidence function ι is given by ι(ekij) = {vi, vj} for all relevant values of i, j, k. For instance

ι(e113) = ι(e213) = {v1, v3}. ■

If we wish to add loops to an undirected graph that is a simple graph or multigraph, then
we obtain what is called a general graph.

Definition 10.5. A general graph (or pseudograph) is an undirected graph that may have
loops or parallel edges.

As with a multigraph there is a more formal definition that characterizes a general graph as
an ordered triple G = (V,E, ι), only now with incidence function ι : E → {{u, v} : u, v ∈ V }, so
that the codomain of ι does not prohibit having u = v, and thus there may exist some e ∈ E
such that ι(e) = {v}. Having ι(e) = {v} may be interpreted to mean that both endpoints of
the edge e are located at the same vertex v (our preferred viewpoint), or that e has only one
endpoint v (meh).

Graph theory being a relatively young field of mathematics, there is as yet no standard
terminology, and so in particular many authors don’t make a distinction between general graphs
and multigraphs. Our practice will be to make little use of the terms multigraph and general
graph, and instead refer to an undirected graph G as a “graph” if G is permitted to have loops
or parallel edges, and a “simple graph” if G is forbidden to have loops or parallel edges.

Definitions , , and all contain the word “may.” This is no accident: a multigraph may have
parallel edges, but it does not have to; and a general graph may have parallel edges or loops,
but it is not mandatory. As a result, the class of simple graphs is contained within the class of
multigraphs, and the class of multigraphs is contained within the class of general graphs.

Types of Simple Graphs

The simple graph, which was defined first, is a type of graph that has many subtypes that
are important in an introductory study of graph theory.

Definition 10.6. A simple graph is a complete graph on n vertices, denoted by Kn, if
|V (Kn)| = n and for all u, v ∈ V (Kn) with u ̸= v there exists exactly one e ∈ E(Kn) such that
e = uv. If a simple graph is not complete, then it is noncomplete.

Thus every pair of distinct vertices in a complete graph are joined by exactly one edge.
Illustrations of Kn for 1 ≤ n ≤ 6 are supplied by Figure 3. The graph K1 is trivially complete,
for with there being but one vertex in the graph we find the statement “If u ̸= v, then there
exists exactly one edge e ∈ E(K1) such that e = uv” to be vacuously true for all u, v ∈ V .

How many edges does a complete graph on n vertices have? The following proposition gives
the answer. Recall from our study of binomial coefficients that we define C(n, k) = 0 if k > n,
and so in particular C(1, 2) = 0.
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K1 K2 K3 K4 K5 K6

Figure 3. The complete graphs Kn for 1 ≤ n ≤ 6.

Proposition 10.7. For any n ∈ Z+, |E(Kn)| = C(n, 2).

Proof. The proof will be executed by induction. Clearly |E(K1)| = 0 = C(1, 2), which
establishes the basis step. Suppose that |E(Kn)| = C(n, 2) for some n ≥ 1. The graph Kn has
vertex set V (Kn) = {v1, . . . , vn}, whereas V (Kn+1) = {v1, . . . , vn+1} = V (Kn) ∪ {vn+1}. Thus
Kn+1 may be constructed from Kn by adding the vertex vn+1 to V (Kn) to form V (Kn+1), and
joining vn+1 to each of v1, . . . , vn with a single edge. This adds n edges to the edge set E(Kn) to
form E(Kn+1), and so |E(Kn+1)| = |E(Kn)|+ n. Employing our inductive hypothesis, we have

|E(Kn+1)| = C(n, 2) + n =
n!

2!(n− 2)!
+ n =

n(n+ 1)

2
=

(n+ 1)!

2!(n− 1)!
= C(n+ 1, 2),

and the proof is done. ■

Definition 10.8. A simple graph with n ≥ 3 distinct vertices v1, v2, . . . , vn is a cycle, denoted
by Cn, if E(Cn) = {vkvk+1 : 1 ≤ k ≤ n− 1} ∪ {vnv1}.

For Cn as defined in Definition 10.8 it’s not unheard-of to declare that vn+1 = v1, so that E
may be expressed more simply as E = {vkvk+1 : 1 ≤ k ≤ n}. (To be sure, Cn still consists of
precisely n vertices, but now one of them has dual designations.) The cycles C3, C4, C5, and C6

are shown in Figure 4

Definition 10.9. Given a cycle Cn with vertex set V ′ = {v1, . . . , vn} and edge set

E ′ = {v1v2, v2v3, . . . , vn−1vn, vnv1},
a simple graph (V,E) with V = V ′ ∪ {v0} and E = E ′ ∪ {v0vk : 1 ≤ k ≤ n} is a wheel, denoted
by Wn.

C3 C4 C5 C6

Figure 4. The cycles Cn for 3 ≤ n ≤ 6.



21

W3 W4 W5 W6

Figure 5. The wheels Wn for 3 ≤ n ≤ 6.

In Figure 4 are shown the wheels W3, W4, W5, and W6. As Definition 10.9 indicates, a wheel
Wn is created from the cycle Cn by adding one additional vertex and n edges. The vertex v0 is
most naturally placed at the center of a cycle, so that it becomes the “hub” of the resultant
wheel, with the edges joining v0 to all the n vertices of the cycle forming the “spokes” of the
wheel.

One extremely useful kind of simple graph is the bipartite graph. Though we give a definition
here, most of the theoretical results that we will develop in this chapter concerning bipartite
graphs will appear in the next section and beyond.

Definition 10.10. A simple graph G is bipartite (or a bigraph) if there exist V1, V2 ⊆ V (G)
such that V1 ∩ V2 = ∅, V1 ∪ V2 = V (G), and every e ∈ E(G) has one endpoint in V1 and one
endpoint in V2. The pair (V1, V2) is a bipartition of V (G).

We observe that there is no prohibition against one or both sets in a bipartition (V1, V2) of
V (G) being the empty set, with V1 = V2 = ∅ implying that V (G) = ∅, in which case G is the
empty graph. We further note that the definition of a bipartite graph may be written thus:
“If the vertex set V (G) of a simple graph G admits a bipartition, then G is bipartite.” From
this restatement of the definition it may be easier to perceive that the empty graph is trivially
bipartite, as is the graph K1 that has one vertex and no edges. Indeed a graph consisting of any
number of vertices and no edges is bipartite, though such a graph has few uses.

Example 10.11. Any cycle with an even number of vertices is bipartite, which we now
demonstrate. Let Cn be a cycle for which n is even, so that n = 2m for an integer m ≥ 2. The
vertex set is V = {vk : 1 ≤ k ≤ 2m}, and defining v2m+1 = v1, the edge set is

E = {vkvk+1 : 1 ≤ k ≤ 2m}.

Now define V1 = {v2k : 1 ≤ k ≤ m} and V2 = {v2k−1 : 1 ≤ k ≤ m}, so that V1 is the set
of even-indexed vertices and V2 is the set of odd-indexed vertices. Clearly V1 ∩ V2 = ∅ and
V1 ∪ V2 = V . Suppose e ∈ E, so that e = vkvk+1 for some 1 ≤ k ≤ 2m. Clearly vk and vk+1

must have opposite parity, even in the case when k = 2m, and so either vk ∈ V1 and vk+1 ∈ V2
or the reverse. Therefore (V1, V2) is a bipartition of V and Cn is bipartite.

To show that Cn fails to be bipartite whenever n ≥ 3 is odd is an exercise left to the
reader. ■
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(a) (b) (c)

(d) (e)

Figure 6. Using colors to algorithmically obtain a bipartition for a bipartite graph.

We give now a theorem that poses the question of whether a simple graph is bipartite in
terms of whether the graph’s vertices can be assigned one of two colors in such a way that no
vertex is joined to another of the same color.

Theorem 10.12. Let G be a simple graph. Then G is bipartite if and only if it is possible to
assign one of two different colors to each vertex of G so that no edge joins two vertices of the
same color.

Proof. Suppose that G = (V,E) is bipartite, and let (V1, V2) be a bipartition of V . By coloring
all the vertices in V1 red and all the vertices in V2 blue, we find that no edge joins two vertices
of the same color.

For the converse, suppose it’s possible to color each vertex in V either red or blue in such
a way that no edge joins two vertices of the same color. By letting V1 be the set of all the
red vertices and V2 all the blue, we achieve a bipartition (V1, V2) of V and conclude that G is
bipartite. ■

Example 10.13. To determine whether the graph in Figure 6(a) is bipartite, we pick a vertex—
any vertex—and assign it a color such as red, as in Figure 6(b). In Figure 6(c) all vertices
joined to the red vertex are then colored blue, whereafter all uncolored vertices joined to the
blue vertices are colored red in Figure 6(d). The process ends in Figure 6(e), when all vertices
are either red or blue, and no two vertices of the same color are found to be adjacent. The
graph is bipartite by Theorem 10.12, with the four red vertices and five blue vertices forming a
bipartition of the vertex set of the graph.

If at any stage in such a procedure it is found to be impossible to assign a color to a particular
vertex that does not avoid two like-colored vertices being joined, then the process stops and the
graph in question is concluded to be not bipartite. ■
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Figure 7.

We present one more special kind of simple graph in this section that is known as a hypercube
graph, and to define it we recall the Hamming distance. Given two bitstrings of length n,
a = a1a2 · · · an and b = b1b2 · · · bn, the Hamming distance between a and b is

∆(a, b) =
∣∣{1 ≤ i ≤ n : ai ̸= bi}

∣∣;
that is, ∆(a, b) equals the number of values of the index i for which ai and bi do not match. We
further recall that the empty string, denoted by λ, is the string of length 0.

Definition 10.14. The hypercube graph Qn is the simple graph for which V (Qn) is the set
of all bitstrings of length n, and E(Qn) = {uv : u, v ∈ V (Qn) and ∆(u, v) = 1}. In the case
when n = 0 we have V (Q0) = {λ} and E(Q0) = ∅.

The hypercube graphs Q0 (a point), Q1 (a line segment), Q2 (a square), and Q3 (a cube)
are illustrated in Figure 7.

Proposition 10.15. Any hypercube graph Qn is bipartite.

Proof. Let o denote the string of length n consisting only of zeros, and define

V0 = {v ∈ V (Qn) : ∆(o, v) is even} and V1 = {v ∈ V (Qn) : ∆(o, v) is odd}.

Clearly V0 ∪ V1 = V (Qn) and V0 ∩ V1 = ∅. To show that (V0, V1) is a bipartition of V (Qn), it
remains to show that any e ∈ E(Qn) has one endpoint in V0 and the other endpoint in V1. This
may be done by showing that no edge has both endpoints in V0 or both endpoints in V1.

Suppose u and v are distinct vertices in V0, so that both u = u1 · · ·un and v = v1 · · · vn
are bitstrings of length n that each have an even number of 1’s (which includes the possibility
of having no 1’s and hence equaling o). Because u ̸= v, there exists at least one index value
1 ≤ k ≤ n for which uk ̸= vk, so that either uk = 1 and vk = 0, or uk = 0 and vk = 1. We may
assume that uk = 1 and vk = 0 without loss of generality. Now, among the n − 1 bits ui for
i ̸= k there must be an odd number of 1’s, and among the n− 1 bits vi for i ̸= k there must
be an even number of 1’s. This implies that there must exist at least one index value ℓ ̸= k
for which uℓ ̸= vℓ, and hence ∆(u, v) ≥ 2. In particular ∆(u, v) ̸= 1, so that uv /∈ E(Qn), and
therefore no two vertices in V0 are adjacent. That this holds for V1 as well is demonstrated by a
similar argument. ■



24

a b

c
de

Figure 8.

Directed Graphs

A directed graph, or digraph, is a graph D = (V,E) such that each edge has a particular
direction (or orientation), and so is called a directed edge or arc. If arc e ∈ E has endpoints
u, v ∈ V , then e is associated with one of the ordered pairs (u, v) and (v, u), and we say that e
joins u and v, or that u and v are adjacent. If e is associated with (u, v), then e is said to have
tail u and head v, or that e starts at u and ends at v, and in a drawing of digraph D the
arc e is denoted by an arrow pointing from u to v (hence the “tail” and “head” terminology). If
D has only one arc with tail u and head v, then it is common practice to denote such an arc by
(u, v) or uv. Two or more arcs in D having the same tail and the same head are called parallel
arcs. For u ̸= v, if arc e1 has tail u and head v, and arc e2 has tail v and head u, then e1 and
e2 are not considered parallel, but rather are said to be oppositely directed (or oppositely
oriented). If an arc’s tail and head are both v, then the arc is a loop at v.

Generally our convention henceforth will be to use the word “graph” to mean “undirected
graph.” The term “graph theory” is an exception, as it encompasses the theory of both
undirected and directed graphs. One other kind of graph that we will not make any study of is
a mixed graph, which possesses both undirected and directed edges.

We give definitions for two types of digraph, included here so they may be readily contrasted
with the different types of undirected graphs already defined. No theory or applications of
digraphs will be entertained until §10.4.

Definition 10.16. A simple directed graph (or simple digraph) is a digraph without loops
or parallel arcs.

As with the sundry types of undirected graphs, there is a more formal definition of a simple
digraph D that incorporates an incidence function ι, and so characterizes D as an ordered triple
D = (V,E, ι). The incidence function ι : E → {(u, v) : u, v ∈ V and u ̸= v} is a one-to-one
function such that ι(e) = (u, v) if e ∈ E starts at u and ends at v. We observe that there may
exist e1, e2 ∈ E such that ι(e1) = (u, v) and ι(e2) = (v, u), but the codomain of ι compels u ≠ v
since D cannot have loops, and certainly arcs e1 and e2 are not parallel since ι(e1) ̸= ι(e2). The
endpoints of e1 and e2 are indeed the same two vertices (or “located” at the same two vertices),
but e1 has tail u and head v while e2 has tail v and head u.
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Definition 10.17. A directed multigraph (or multidigraph) is a digraph that may have
loops or parallel arcs.

This definition of a multidigraph is worded so as to include all digraphs, including simple
digraphs. Thus a multidigraph is not required to have loops or parallel arcs. A directed
multigraph may be characterized as an ordered triple D = (V,E, ι), where ι : E → V × V is
defined by ι(e) = (u, v) if e ∈ E joins u, v ∈ V . An arc e ∈ E is a loop at v if and only if
ι(e) = (v, v). Arcs e1, . . . , ek ∈ E are parallel arcs if and only if ι(e1) = · · · = ι(ek).
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10.2 – Undirected Graphs

In the previous section we defined what it means for two vertices in a graph to be joined,
and it will be convenient to define a few related terms. Given an undirected graph G, we say
vertices u, v ∈ V (G) are neighbors (or adjacent) in G if u and v are endpoints of an edge
e ∈ E(G). Such an edge e is said to be incident to u and to v, and we may furthermore say
that u is a neighbor of v (and v a neighbor of u). A vertex is its own neighbor if and only if it
is joined to itself by a loop.

Definition 10.18. Let G be an undirected graph. The set of all neighbors in G of a vertex
v ∈ V (G), denoted by NG(v), is called the neighborhood of v in G. For any A ⊆ V (G), the
neighborhood of A in G, denoted by NG(A), is the set

NG(A) =
⋃
v∈A

NG(v).

If it does not give rise to ambiguity, the symbols N(v) and N(A) may be used instead of
NG(v) and NG(A) to denote the neighborhood of v ∈ V (G) and A ⊆ V (G), respectively.

It can be seen that v ∈ N(A) if and only if the vertex v is adjacent to at least one vertex in
the set A.

Definition 10.19. The degree of a vertex v in an undirected graph G, denoted by dG(v), is
the number of edge endpoints located at v. We say v is isolated if dG(v) = 0, and pendant if
dG(v) = 1.

Again, if it does not occasion confusion, instead of dG(v) the symbol d(v) may be used to
denote the degree of a vertex v in a graph G.

In these notes we always regard an edge as having two endpoints, with a loop being an edge
with both endpoints located at the same vertex. This makes the definition of the degree of a
vertex v most elegant. Alas, many textbooks regard a loop as a one-ended edge, thereby turning
terminology into foe instead of friend in the enterprise of expressing ideas clearly and succinctly.
In such textbooks the degree of a vertex v must be defined as something along the lines of
“the number of edges incident to v, except that a loop at v is counted twice.” This alternative
definition would also work for our purposes, but it is relatively cumbersome.

Example 10.20. We consider here the graph G in Figure 9, which is a general graph with
vertex set {s, t, u, v, w, x, y, z} and edge set consisting of 15 edges (including four loops). The
degree of each vertex is: d(s) = d(t) = d(u) = 6, d(v) = 5, d(w) = 3, d(x) = 0, d(y) = 4, and
d(z) = 1. Thus x is an isolated vertex and z is pendant. The neighborhood of each vertex
is: N(s) = {s, t, w}, N(t) = {s, u, v, w}, N(u) = {t, u, v}, N(v) = {t, u, w}, N(w) = {s, t, v, z},
N(x) = ∅, N(y) = {y}, and N(z) = {w}. If A = {s, t, u}, then

N(A) = N(s) ∪N(t) ∪N(u) = {s, t, u, v, w}.

We note that a vertex is an element of its own neighborhood only when there is a loop at that
vertex. ■
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We now state and prove a couple of theorems concerning the degrees of vertices in an
undirected graph.

Theorem 10.21 (Handshaking Theorem). If G = (V,E) is an undirected graph, then

2|E| =
∑
v∈V

d(v). (10.1)

Proof. Suppose G = (V,E) is an undirected graph. Each e ∈ E has two endpoints, and so
must either contribute 1 to the degrees of two distinct vertices (if e is not a loop), or 2 to the
degree of one vertex (if e is a loop). In either case e contributes 2 to the sum of the degrees of
all vertices in V , so that the sum must equal twice the number of edges in E and the veracity
of (10.1) is affirmed. ■

Theorem 10.22. Any undirected graph has an even number of vertices of odd degree.

Proof. Let G = (V,E) be an undirected graph, Vo the set of vertices in G of odd degree, and
Ve the set of vertices in G of even degree. Using Theorem 10.21, and observing that Vo ∩ Ve = ∅
and Vo ∪ Ve = V , we obtain

2|E| =
∑
v∈V

d(v) =
∑
v∈Vo

d(v) +
∑
v∈Ve

d(v).

By definition any vertex v ∈ Ve has even degree, so that d(v) = 2nv for some integer nv ≥ 0,
and hence ∑

v∈Vo

d(v) = 2|E| −
∑
v∈Ve

d(v) = 2

(
|E| −

∑
v∈Ve

nv

)
.

This shows that
∑

v∈Vo
d(v) is an even integer, but because all the sum’s terms are odd integers

we conclude that the number of terms, which is |Vo|, must be even. Therefore G has an even
number of vertices of odd degree. ■

There are a number of ways to create new graphs using one or more existing ones. First we
need to be clear what it means for two graphs to be different. Given graphs G and H, we write
G = H if V (G) = V (H) and E(G) = E(H); otherwise we write G ̸= H.



28

Definition 10.23. A subgraph of G = (V,E, ι) is a graph H = (W,F, κ) for which W ⊆ V ,
F ⊆ E, and κ = ι|F . We then write H ⊆ G and say G contains H. If H ⊆ G and H ̸= G,
then H is a proper subgraph of G and we write H ⊂ G.

We see that H is a proper subgraph of G if and only if H is a subgraph of G and either
V (H) ⊂ V (G) or E(H) ⊂ E(G). Any graph is a subgraph of itself, but not a proper one. Also
any graph H that has more vertices or edges than a graph G cannot be a subgraph of G.

Example 10.24. Referring to Figures 4 and 5, it can be seen that the cycles Cn are proper
subgraphs of the wheels Wn for 3 ≤ n ≤ 6, and indeed this is the case for all n ≥ 3. Comparing
K4 with W4 in Figures 3 and 5, we see that K4, despite having fewer edges and vertices than
W4, is not a subgraph of W4 because K4 has edges joining opposite corners of the square which
W4 lacks. Also W4 may be recognized as not being a subgraph of K4 for the simple reason that
it has more vertices than K4. ■

There are several types of subgraphs that are indispensable in the study of graph theory.
The definitions we give here are what appear to be most common in the more modern litera-
ture, though many authors still steer by different stars, even among contemporary writers of
mainstream discrete mathematics textbooks.

For the statement of the definitions we make use of a special notation to denote “travel”
within a graph G along some subset of its edges. If a graph G has vertices v0, . . . , vn, and for
each 1 ≤ i ≤ n there is an edge ei joining vi−1 to vi, then it is possible to travel from v0 to vn
along the edges e1, . . . , en, and we specify this route by writing the list v0e1v1e2 · · · en−1vn−1envn,
a finite alternating sequence of vertices and edges called a vertex-edge sequence. If G is
a multigraph and e′1 is another edge with endpoints v0 and v1 (so that e1 and e′1 are parallel
edges), then the list v0e

′
1v1e2 · · · en−1vn−1envn is considered to be a route from v0 to vn that is

distinct from the former route that travels on e1.

Definition 10.25. Let G = (V,E, ι) be an undirected graph with incidence function ι, and let
n ∈ Z+.

A walk is a subgraph of G consisting of a vertex-edge sequence v0e1v1 · · · envn of vertices
v0, . . . , vn ∈ V and edges e1, . . . , en ∈ E such that ι(ei) = {vi−1, vi} for all 1 ≤ i ≤ n. A trivial
walk is a walk consisting of a single vertex and no edges. A subwalk is any walk that is a
proper subgraph of a walk.

A trail is a walk in which all edges are distinct. That is, if v0e1v1 · · · envn is a trail, then
ei ̸= ej whenever i ̸= j.

A path is a trail in which all vertices are distinct. That is, if v0e1v1 · · · envn is a path, then
vi ̸= vj whenever i ̸= j.

The length of a walk equals the number of edges (counting repetitions) in its associated
sequence, so that v0e1v1 · · · envn has length n. If u = v0 and v = vn, then v0e1v1 · · · envn is a
u, v-walk, with u being the starting vertex of the walk and v being the ending vertex. The
internal vertices of a walk are those vertices that are neither the starting nor ending vertex.

Definition 10.26. A walk or trail is closed if its starting vertex and ending vertex are the
same, otherwise it is open.
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Figure 10.

A cycle is a closed trail for which there exist no repeated internal vertices. A k-cycle is a
cycle of length k, an odd cycle is a cycle of odd length, and an even cycle is a cycle of even
length. A triangle is a cycle of length 3.

A circuit is any closed trail. A trivial circuit/cycle is a circuit/cycle consisting of a
single vertex and no edges.

A u, v-walk is also known as a walk from u to v, and one may certainly speak also of a
u, v-trail, u, v-path, or a trail or path from u to v. Also, if u = v0 and v = vn, then either of
v0e1v1 · · · envn or vnen · · · v1e1v0 may be called a walk between u and v, with substitution of
“trail” or “path” for “walk” permitted where appropriate. A walk is said to pass through any
vertex in its vertex-edge sequence, and traverse any edge in its vertex-edge sequence.

A path may be defined as a walk in which all vertices are distinct, since having distinct
vertices implies having distinct edges. There cannot be such a thing as a closed path, because to
be closed requires the starting vertex of a walk v0e1v1 · · · envn, which is v0, to equal the ending
vertex vn, and by definition a path cannot pass through any vertex more than once.

If a subgraph that is a cycle, as the term is defined by Definition 10.26, is viewed as being
a graph in its own right (which it is), then it satisfies the properties of a cycle as defined by
Definition 10.8. It can also be seen from Definitions 10.25 and 10.26 that a trivial walk, trivial
cycle, and trivial circuit are all the same thing (a single vertex), and so we naturally regard a
trivial walk to be a closed walk.

In a simple graph, which has no parallel edges, the vertex sequence v0v1 . . . vn associated
with the vertex-edge sequence v0e1v1 · · · envn of a walk is sufficient to fully define the walk. The
same is true of the associated edge sequence e1e2 . . . en.

Example 10.27. We consider here the graph in Figure 10(a). The walk v1ev2 is a path of
length 1, and this path can just as well be specified by the vertex sequence v1v2. The edge
sequence e of the path, on the other hand, fails to specify which is the starting vertex, since the
path v2ev1 also has edge sequence e. The edge sequence of a walk is best used only in situations
in which the vertex sequence is known.

The walk v1ev2ev1 is neither a path (v1 is repeated) nor a trail (e is repeated). Though the
walk is closed and all internal vertices are distinct, it is not a cycle on account of it having a
repeated edge. ■
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Example 10.28. Consider the graph in Figure 10(b). The walk v2e3v2 is a closed trail of
length 1, and it is also a cycle since there are no repeated internal vertices. In this case the
edge sequence e3 is unambiguous with regards to which vertex is first, since v2 is the only choice.
The vertex sequence is v2v2. Technically v2 is the vertex sequence of a walk of length 0, but this
notion is excluded from Definition 10.25 since we shall have no need of it in the sequel.

The walk v1e1v2e2v1 is a cycle of length 2, while v1e1v2e3v2e2v1 is a closed trail—and hence
a circuit—that is not a cycle since the internal vertices are not distinct. ■

A graph is acyclic if it contains no subgraph that is a cycle. Being defined as a kind of
subgraph, a walk is itself a graph, and so we naturally define a walk to be acyclic if it has no
subgraph that is a cycle.

Example 10.29. The graph in Figure 10(a) is acyclic, but the findings of Example 10.28
indicate that the graph in Figure 10(b) is not acyclic. The more complicated graph in Figure
10(c) is also not acyclic since, for instance, the subgraph that is the trail v3e9v5e6v6e8v3 is a
cycle. Since this cycle is a subgraph of the trail v3e9v5e6v6e8v3e2v1e1v2, we conclude that the
trail v3e9v5e6v6e8v3e2v1e1v2 is not acyclic. The trail v5e6v6e8v3e2v1e1v2 it acyclic, however. ■

Since a walk is a graph and our convention it to denote graphs by capital letters, we likewise
may on occasion denote a walk by a capital letter such as W . Thus if W is a walk of length n,
then W = v0e1v1 · · · envn.

Proposition 10.30. Every closed walk v0e1v1 · · · envn of length n ≥ 3 with vertices v0, . . . , vn−1

distinct is a cycle.

Proof. Fix n ≥ 3, and let W = v0e1v1 · · · envn be a closed walk of length n with distinct
vertices v0, . . . , vn−1 in the graph G = (V,E, ι). Since ι(ei) = {vi−1, vi} for 1 ≤ i ≤ n, the edges
e1, . . . , en−1 are distinct. We also have ι(en) = {vn−1, vn} = {vn−1, v0} since W is closed. Now,
for 2 ≤ i ≤ n− 1 the edge ei does not have v0 as an endpoint, and so ei ̸= en. As for e1, which
has endpoints v0 and v1, the hypothesis n ≥ 3 implies that vn−1 ̸= v1, and so e1 ̸= en. Thus the
edges e1, . . . , en−1 are all distinct from en, so that W has distinct edges; and because W also
has distinct internal vertices, we conclude that it is a cycle. ■

Proposition 10.31. A walk is a path if and only if it is acyclic.

Proof. We shall use induction to prove that, for any n ∈ Z+, if Wn is a path of length n then
it is acyclic. The basis step is trivial: The path W1 = v0e1v1 is clearly acyclic. Fix n ≥ 1, and
suppose Wn+1 = v0e1v1 · · · en+1vn+1 is a path of length n. We observe that no cycle in Wn+1

can contain vn+1, since this vertex is joined only to vn in Wn+1, and each vertex in a cycle must
be adjacent to two other (distinct) vertices in the cycle. Thus any cycle in Wn+1 must be a
subgraph of Wn = v0e1v1 · · · envn. But Wn is a path of length n, and hence is acyclic by our
inductive hypothesis. Therefore Wn+1 is acyclic, and we have proven sufficiency (i.e. if a walk is
a path then it is acyclic).

We now prove necessity by proving the contrapositive. Suppose a walk W = v0e1v1 · · · envn
is not a path, so that not all its vertices are distinct. Let 1 ≤ j ≤ n be the smallest integer for
which the vertices in the list v0, . . . , vj are not distinct, so that there exists 0 ≤ i < j such that
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vi = vj and vi, vi+1, . . . , vj−1 are distinct. Now, the walk C = viei+1vi+1 · · · ejvj is a subgraph
of W for which all internal vertices are distinct, so that C is a cycle, and therefore W is not
acyclic. ■

Theorem 10.32. If there is a u, v-walk in a graph G with distinct vertices u and v, then there
is a subwalk that is an acyclic u, v-path.

Proof. For u ̸= v, suppose there is a u, v-walk in a graph G. The length of the walk is
at least 1, so that the set of lengths of all u, v-walks in G is a nonempty set of positive
integers, and thus the well-ordering principle implies there is a u, v-walk W = v0e1v1 · · · emvm
of minimum length m ≥ 1, where v0 = u and vm = v. Suppose there exist 1 ≤ i < j ≤ m
such that vi = vj, so that W contains the closed subwalk S = viei+1vi+1 · · · ej−1vj−1ejvj. (If
j = i+ 1 then S is a loop at vi.) Deleting ei+1vi+1 · · · ej−1vj−1ejvj from W yields the subwalk
W ′ = v0e1v1 · · · eiviej+1vj+1 · · · emvm. But W ′ is a u, v-walk that is shorter than W , which is
impossible. Hence the vertices of W must be distinct, so that W is a u, v-path. By Proposition
10.31 this path is acyclic. ■

The next proposition could be proved in much the same manner as Theorem 10.32, but it
should be more instructive to instead take a different approach.

Proposition 10.33. If a closed trail passes through a vertex u in a graph G, then there is a
subtrail that is a cycle passing through u.

Proof. Let T be a closed trail in G with u as a vertex. If T is a loop at u, or if such a loop
exists, then the loop is a cycle that passes through u and so there is nothing left to prove. We
assume therefore that there is no loop at u. It will be convenient to cast u in the role of the first
(and hence last) vertex of T , so that T = ue1v1 · · · en−1vn−1enu. We must have n ≥ 2, since if
n = 1 we find T = ue1u to be a loop at u. Finally, vn−1 ̸= u must be the case, otherwise T has
subtrail vn−1enu = uenu, again a loop at u.

Now, the subtrail T ′ = ue1v1 · · · en−1vn−1 is a u, vn−1-walk in G with u ̸= vn−1, and so
Theorem 10.32 implies there is an acyclic u, vn−1-path uf1w1 · · · fm−1wm−1fmvn−1 that is a
subtrail of T ′. Using this path we construct the circuit

C = uf1w1 · · · fm−1wm−1fmvn−1enu,

which is a subtrail of T . All the internal vertices of C are distinct, and so the subtrail C is a
cycle passing through u. ■

Theorem 10.34. If graph G has vertices u ̸= v and two different u, v-trails, then there is a
cycle in G.

Proof. Any loop in G is a cycle. Also, if there are parallel edges e1 and e2 joining any two
distinct vertices u and v in G, then ue1ve2u is a cycle in G. We henceforth assume that G is a
simple graph, and so lacks loops and parallel edges.

Suppose G has vertices u ̸= v for which there exist two distinct u, v-trails T1 and T2. If either
trail has a cycle then we’re done, so assume T1 and T2 are acyclic, so that both are u, v-paths
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by Proposition 10.31. Since G is simple both paths are uniquely determined by their vertex
sequence. Let T1 = u0u1 · · ·un and T2 = v0v1 · · · vm, with u0 = v0 = u and un = vm = v.

That T1 ̸= T2 implies there is some i ≥ 1 such that ui ̸= vi, so let ℓ = min{i : ui ̸= vi}. That
un = vm implies there exists j ≥ ℓ and k ≥ ℓ such that uj = vk, and we choose j and k such
that j + k is minimal. Let w = uℓ−1 = vℓ−1 and x = uj = vk, and define the closed walk

C = uℓ−1uℓ · · ·ujvk−1vk−2 · · · vℓ−1 = wuℓ · · ·uj−2uj−1xvk−1vk−2 · · · vℓw.

The length of C is at least 3 since uℓ ̸= vℓ, and we claim that C is a cycle. The ui vertices in C
are distinct since T1 is a path, and the vi vertices in C are distinct since T2 is a path. Suppose
for some ℓ− 1 ≤ r ≤ j and ℓ ≤ s ≤ k − 1 we have ur = vs. But then r + s ≤ j + k − 1, which
contradicts the condition that j and k be chosen so uj = vk and j + k is minimal. Therefore all
the vertices in C excluding vℓ−1 are distinct, and by Proposition 10.30 we conclude that C is a
cycle. ■

Definition 10.35. Let G = (V,E) be a graph with incidence function ι. The subgraph induced
by V ′ ⊆ V is the graph (V ′, E ′) with E ′ = {e ∈ E : ι(e) ⊆ V ′}.

For v ∈ V , we denote by G−v the subgraph induced by V −{v}, so that G−v = (V −{v}, E ′)
with E ′ consisting of those edges in E not incident to v. For V ′ ⊆ V , we denote by G− V ′ the
subgraph induced by V − V ′.

More verbosely, given the graph G = (V,E), the subgraph induced by V ′ ⊆ V is the subgraph
of G consisting of the vertices in V ′ and only those edges in E whose endpoints both lie in V ′.
Also from Definition 10.35 it can be seen that G− v and G− {v} are the same thing for any
v ∈ V , with G− v being merely a notational convenience. We have G− v = (V −{v}, E) if v is
an isolated vertex of G.

Example 10.36. Figure 5 depicts the wheels Wn for 3 ≤ n ≤ 6. Let c be the center vertex of
any wheel Wn. Referring to Figure 4, it can be seen that Wn − c = Cn. ■

Definition 10.37. Let G = (V,E) be a graph. If e ∈ E, then G− e is the graph (V,E − {e});
and if E ′ ⊆ E, then G − E ′ is the graph (V,E − E ′). If e /∈ E, then G + e = (V,E ∪ {e})
provided the new edge e is designated to have endpoints that are in V .

Ambiguities may arise with some of these notations. For instance, if u and v are vertices of
a simple graph G = (V,E) with {u, v} ∈ E, then G− {u, v} could be the subgraph induced by
V − {u, v}, or it could be the graph (V,E − {{u, v}}). The subgraph induced by V − {u, v}
eliminates from G not only the edge {u, v}, but also any other edge in E incident to u or v.
Unless context makes clear which graph is meant by writing G − {u, v}, it may be better to
denote an edge joining u and v by a symbol other than {u, v}, such as uv.3

Definition 10.38. Let {Gi : 1 ≤ i ≤ n} be a family of simple graphs, with edges in different
graphs being considered identical if their endpoints are identically labeled. The union of
G1, . . . , Gn is the simple graph

⋃n
i=1Gi defined by

⋃n
i=1Gi =

(⋃n
i=1 V (Gi),

⋃n
i=1E(Gi)

)
.

3Of course, uv could be the vertex sequence of a u, v-walk, so context is still important.
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Two graphs G and H are disjoint if V (G) ∩ V (H) = ∅. If {Gi : 1 ≤ i ≤ n} is a family of
mutually disjoint graphs, so that V (Gi) ∩ V (Gj) = ∅ whenever i ̸= j, then the disjoint union
of G1, . . . , Gn is the graph

⊔n
i=1Gi defined by

⊔n
i=1Gi =

(⊔n
i=1 V (Gi),

⊔n
i=1E(Gi)

)
.

Example 10.39. We use here the notation uv to denote an edge {u, v}. If a graph G1

has V (G1) = {a, b, c, d, e} and E(G1) = {ab, ad, bc, be, ce, de}, and another graph G2 has
V (G2) = {a, b, c, d, f} and E(G2) = {ab, bc, bd, bf, cf}, then the union G1 ∪G2 has

V (G1 ∪G2) = {a, b, c, d, e, f}
and

E(G1 ∪G2) = {ab, ad, bc, bd, be, bf, ce, cf, de}.

See Figure 11. We note that, for instance, the edge ab ∈ E1 is considered identical to the edge
ab ∈ E2 since their endpoints are identically labeled as a and b. Thus we do not obtain parallel
ab edges in the union of the graphs, and the union is a simple graph as a result. ■

Definition 10.40. The complement of a simple graph G is the graph G with vertex set
V (G) = V (G), and edge set E(G) defined by {u, v} ∈ E(G) if and only if {u, v} /∈ E(G).

Definition 10.41. The distance between vertices u and v, denoted by d(u, v), is the length of
the shortest possible u, v-path.

The shortest possible path from v to v is the trivial path, which has length 0, and hence
d(v, v) = 0.

Theorem 10.42. If G is a nontrivial graph, then G is bipartite if and only if G has no odd
cycles.

Proof. Suppose nontrivial graph G is bipartite, with bipartition (V1, V2). Let C = v1v2 · · · vmv1
be a cycle in G, with v1 ∈ V1. Then v2 ∈ V2, v3 ∈ V1, v4 ∈ V2, and so on. In particular we have
vi ∈ V2 if and only if i is even, and since vm is adjacent to v1, it follows that vm ∈ V2, and hence
m is even. Since C has m edges, we conclude that C is an even cycle, and therefore G has no
odd cycles.

Now suppose that nontrivial graph G has no odd cycles. We further assume, for now, that
G is connected. For u ∈ V (G), let V1 consist of all x ∈ V (G) such that d(u, x) is even, and let
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V2 consist of all y ∈ V (G) such that d(u, y) is odd. Since d(u, u) = 0, we have u ∈ V1. Clearly
(V1, V2) is a partition of the set V (G), but suppose that it is not a bipartition for G. Then either
V1 contains two adjacent vertices, or V2 does.

We first consider the case wherein v, w ∈ V2 are endpoints of an edge e ∈ E(G). Then there
exist integers p, q ≥ 0 such that d(u, v) = 2p+1 and d(u,w) = 2q+1, so that there is a u, v-path
Puv = v0v1 · · · v2p+1 (where v0 = u and v2p+1 = v) and a u,w-path Puw = w0w1 · · ·w2q+1 (where
w0 = u and w2q+1 = w). Let x be a vertex that lies on both paths, so that x = vi. Now,
because d(u, vi) < i would imply d(u, v) < 2p + 1, which is a contradiction, we must have
d(u, vi) = i. By the same token d(u,wi) = i, and since wi is the only vertex in Puw that is a
distance i from u, it follows that x = vi = wi. Certainly u is such a vertex x: u = v0 = w0. Let
m = max{i : vi = wi}, so that vm = wm is the last common vertex in the vertex sequences for
Puv and Puw. We now construct the cycle

C = vmvm+1 · · · v2pv2p+1w2q+1w2q · · ·wm+1wm.

The length of C is

[(2p+ 1)−m] + 1 + [(2q + 1)−m] = 2(p+ q −m+ 1) + 1,

an odd number, and thus C is an odd cycle. As this is a contradiction, V2 cannot contain
adjacent vertices.

Now suppose v, w ∈ V1 are adjacent. Then there exist p, q ≥ 0 such that d(u, v) = 2p and
d(u,w) = 2q, so that there’s a u, v-path v0v1 · · · v2p (where v0 = u and v2p = v) and a u,w-path
w0w1 · · ·w2q (where w0 = u and w2q = w). Again let vm be the vertex farthest from u that the
two paths share in common, so that vm = wm. We now construct the cycle

C = vmvm+1 · · · v2pv2pw2qw2q · · ·wm+1wm.

The length of C is 2(p+ q −m) + 1, again an odd cycle, again a contradiction. We conclude
that (V1, V2) is indeed a bipartition, and therefore G is bipartite.

Finally, suppose nontrivial graph G is disconnected and has no odd cycles. Then each
connected component of G has no odd cycles and thus must be bipartite by the preceding
arguments, which implies that G itself is bipartite. ■
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10.3 – Directed Graphs

Much of the basic terminology associated with directed graphs, or digraphs, was given in
§10.1, but here we shall make mention of a few more terms. If D is a digraph with incidence
function ι, distinct vertices u, v ∈ V (D), and arc e ∈ E(D) with endpoints u and v, then e has
one of two possible directions (or orientations): e may leave u and enter v, so that ι(e) = (u, v);
or e may leave v and enter u, so that ι(e) = (v, u). Being ordered pairs, we have (u, v) ̸= (v, u)
whenever u ̸= v. The tail and head of an arc are also called, respectively, the initial vertex and
terminal vertex of the arc. An arc e is a loop at v if ι(e) = (v, v), and though in a drawing
of a digraph a loop is drawn as a circular arrow, there is nothing in the machinery that we’ve
developed to distinguish between a clockwise versus counterclockwise direction of “travel,” and
thus it is immaterial which way the arrow points.4

The following definition may be compared to Definition 10.25. As can be seen, the differences
are slight.

Definition 10.43. Let D = (V,E, ι) be a digraph with incidence function ι, and let n ∈ Z+.
A directed walk is a subgraph of D consisting of a vertex-arc sequence v0e1v1 · · · envn

of vertices v0, . . . , vn ∈ V and directed edges e1, . . . , en ∈ E such that ι(ei) = (vi−1, vi) for all
1 ≤ i ≤ n. A directed subwalk is any directed walk that is a proper subgraph of a directed
walk.

A directed trail is a directed walk in which all arcs are distinct, and a directed path is a
directed trail in which all vertices are distinct.

The length of a directed walk equals the number of arcs in its associated sequence. If u = v0
and v = vn, then v0e1v1 · · · envn is a u, v-walk of length n, with u being the starting vertex
of the walk and v being the ending vertex. The internal vertices of a directed walk are those
vertices that are neither the starting nor ending vertex.

A directed walk or trail is closed if its starting vertex and ending vertex are the same. A
directed cycle is a closed directed trail for which there exist no repeated internal vertices. A
directed circuit is any closed directed trail.

As we’ve already done here, we will frequently refer to directed edges as arcs. Moreover, the
word “directed” may be omitted whenever it will not occasion confusion, so that, for instance, a
directed walk may simply be called a walk. Analogous to an undirected graph, in a digraph a
trivial walk/cycle/circuit is defined as a walk/cycle/circuit with a single vertex and no arcs,
with the absence of any arcs obviating the need to include the word “directed” in any of the
three terms.

The definition of a directed walk v0e1v1 · · · envn indicates that the direction of travel along
such a walk must be consistent with the orientation of the walk’s arcs: the head of arc ei must
coincide with the tail of arc ei+1. Thus it is possible that a digraph has a u, v-walk but no
v, u-walk.

In a simple digraph, which has no parallel arcs, the vertex sequence v0v1 . . . vn associated
with the vertex-arc sequence v0e1v1 · · · envn of a directed walk is sufficient to fully define the
walk. The same is true of the associated arc sequence e1e2 . . . en.

4This is also why we do not speak of a “directed loop” here.
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Definition 10.44. Let D be a digraph with incidence function ι and v ∈ V (D). The in-
neighborhood or predecessor set of v is the set

N−
D (v) =

{
x ∈ V (D) : ∃e ∈ E(D) [ι(e) = (x, v)]

}
.

The out-neighborhood or successor set of v is

N+
D (v) =

{
x ∈ V (D) : ∃e ∈ E(D) [ι(e) = (v, x)]

}
.

Elements of N−
D (v) are the in-neighbors or predecessors of v in D, and elements of N+

D (v)
are the out-neighbors or successors of v in D. We say v is a source if N−

D (v) = ∅, and a
sink if N+

D (v) = ∅.

Thus N−
D (v) is the set of all vertices in a digraph D that are the tail of an arc having head

v, and N+
D (v) is the set of vertices in D that are the head of an arc having tail v.

Definition 10.45. The in-degree of a vertex v in a digraph D, denoted by d−D(v), is the number
of arcs with head v; the out-degree of v, denoted by d+D(v), is the number of arcs with tail v.
We say v is a source if d−D(v) = 0, a sink if d+D(v) = 0 and isolated if d−D(v) = d+D(v) = 0.

Example 10.46. Let D be the digraph with drawing given by Figure 12. The in-degree, out-
degree, in-neighborhood, and out-neighborhood of the vertices in D are given in the following
table.

v d−D(v) d+D(v) N−
D (v) N+

D (v)

a 2 3 {a, b} {a, b, e}
b 2 6 {a, e} {a, c, d, e}
c 4 2 {b, c, d} {c, d}
d 2 3 {b, c} {c, e}
e 5 1 {a, b, d} {b}

Since d−D(v) ̸= 0 and d+D(v) ̸= 0 for all v ∈ V (D) = {a, b, c, d, e}, the graph has no sinks or
sources. ■

If v is a source, then no arc has head at v; and if v is a sink, then no arc has tail at v. An
isolated point is both a source and a sink.

Analogous to Theorem 10.21, which pertained to undirected graphs, we have the following
for digraphs.

Theorem 10.47. If D = (V,E) is a digraph, then

|E| =
∑
v∈V

d−D(v) =
∑
v∈V

d+D(v). (10.2)

Proof. Each arc e ∈ E has a tail at some vertex and a head at some vertex, and so contributes
precisely 1 to the sum

∑
v∈V d

−
D(v), and precisely 1 to the sum

∑
v∈V d

+
D(v). Therefore each

sum equals the total number of arcs. ■
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Figure 12.

As with undirected graphs, a digraph is acyclic if it contains no subgraph that is a cycle.
Propositions 10.30 and 10.31, and also Theorem 10.32 and Proposition 10.33, apply equally
well when all edges are directed rather than undirected. We repeat these results here—with
wording included to emphasize their applicability to directed graphs—but omit the proofs for
all but one since they are essentially the same as those given in §10.3. Indeed, in a u, v-walk W
in an undirected graph, travel along W proceeds from u to v in a manner that forces each arc
in the walk to be traversed in one particular direction, so that the arcs could just as well be
directed arcs with orientations consistent with the direction of travel along W . What’s different
is only this: an undirected graph with a u, v-walk also has a v, u-walk, whereas in a digraph
this symmetry may be broken.

Proposition 10.48. In a digraph, every closed walk v0e1v1 · · · envn of length n ≥ 3 with vertices
v0, . . . , vn−1 distinct is a cycle.

Proof. See the proof of Proposition 10.30. ■

Theorem 10.49. If there is a u, v-walk in a digraph D with distinct vertices u and v, then
there is a subwalk that is an acyclic u, v-path.

Proof. See the proof of Theorem 10.32. ■

The next theorem is analogous to Proposition 10.33, but we furnish a proof here that is
rather more concise.

Theorem 10.50. If there is a closed walk from v to v in a digraph D, then there is a subwalk
that is a cycle from v to v.

Proof. If there is an arc e ∈ E(D) that is a loop at v, then the closed walk vev is a cycle from
v to v. Suppose D has no loop at v, and let W = ve1v1 · · · en−1vn−1env be a closed walk from v
to v. We observe that n ≥ 2 must be the case, for if n = 1 we would obtain W = ve1v, which is
a loop at v. Also we must have vn−1 ̸= v, otherwise W has subwalk vn−1env = venv, again a
loop at v. Now, since D contains a v, vn−1-walk for v ̸= vn−1, Theorem 10.49 implies that there
is an acyclic v, vn−1-path P = vf1u1 · · · fm−1um−1fmvn−1 in D, and then Penv (the path P with
arc en and vertex v tacked onto vn−1) is a cycle from v to v. ■
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Proposition 10.51. In a digraph D, a walk is a path if and only if it is acyclic.

Proof. See the proof of Proposition 10.31. ■

We now turn our attention back to some concepts and theoretical developments without
parallel in previous sections.

Definition 10.52. Let D be a digraph with u, v ∈ V (D). The reverse of an arc e ∈ E(D)
with tail u and head v is the arc denoted by eR with tail v and head u. The reverse of a digraph
D is the digraph DR with V (DR) = V (D) and E(DR) = {eR : e ∈ E(D)}.

The reverse of a digraph D is also known as the converse or transpose of D. To obtain
DR, one simply reverses the direction of every arc in D. It is important to view the symbol R in
Definition 10.52 as representing a mapping e 7→ eR. In a simple digraph in which arcs may be
uniquely identified with their endpoints, we find for any arc (u, v) that (u, v)R = (v, u). The
following proposition establishes a few facts concerning the reverse of a digraph.

Proposition 10.53. Let D be a digraph.

1. (DR)R = D.
2. DR is acyclic if and only if D is acyclic.
3. For each v ∈ V (D), d−DR(v) = d+D(v) and d

+
DR(v) = d−D(v)

Proof.
Proof of (1). If e = (u, v), then eR = (v, u), and thus (eR)R = (u, v) = e. Now, e ∈ E(D) iff
eR ∈ E(DR) iff e = (eR)R ∈ E((DR)R), and so E((DR)R) = E(D). Since it’s also the case that
V ((DR)R) = V (DR) = V (D), we conclude that (DR)R = D.

Proof of (2). Suppose that D is not acyclic, so that it contains a cycle v0e1v1 · · · en−1vn−1env0.
Then DR contains the cycle v0e

R
nvn−1e

R
n−1 · · · v1eR1v0, and so is itself not acyclic. Therefore if DR

is acyclic, then D is acyclic. This result in turn implies that if (DR)R is acyclic, then DR is
acyclic. Since (DR)R = D by part (1), the proof is done.

Proof of (3). Let v ∈ V (D). Every arc with tail v in D is reversed so as to have head v in DR,
and every arc with head v in D is reversed so as to have tail v in DR. Hence the number of arcs
with head or tail v in D equals the number of arcs with tail or head v in DR, respectively, and
therefore d+DR(v) = d−D(v) and d

−
DR(v) = d+D(v). ■

Proposition 10.54. Every finite acyclic digraph has at least one sink and at least one source.

Proof. We first show that there must be a sink. Let D be a finite acyclic digraph with
|V (D)| = n, and pick a vertex v1 ∈ V (D). If v1 is a sink, then we’re done; and if v1 is not a
sink, then there is an arc e1 from v1 to another vertex v2 ̸= v1. (If v2 = v1 then v1e1v1 is a
cycle, contradicting the acyclic property of D.) If v2 is a sink, then we’re done; and if not, then
there is an arc e2 from v2 to some v3 /∈ {v1, v2}. This process continues: we’re done if vk is
a sink, otherwise there is an arc ek that leaves vk and enters another vertex vk+1. The walk
W = v1e1v2 · · · vkekvk+1 is acyclic since it is a subgraph of an acyclic digraph, so that W is a
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path by Proposition 10.51, and thus the vertices v1, . . . , vk+1 are distinct. Since there are only
n vertices in V (D), it is clear that this process must terminate at latest when we’ve constructed
a path involving all n vertices, in which case the ending vertex vn is a sink.

Now, DR is also a finite acyclic digraph by Proposition 10.53(2), and so must have some
vertex v that is a sink. This means that d+DR(v) = 0, and thus d−D(v) = 0 by Proposition 10.53(3).
Therefore D has source v. ■

The edges in a digraph D being akin to one-way streets, it is possible that for u, v ∈ V (D)
there is a walk from u to v, but no walk from v to u.

Definition 10.55. For a digraph D let u, v ∈ V (D). Then v is reachable from u if there
exists a directed u, v-walk in D, and u and v are mutually reachable if there is both a directed
u, v-walk and a directed v, u-walk in D.
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10.4 – Graph Representations and Isomorphisms

Formally a graph G is an ordered triple (V,E, ι), with V being a set of vertices, E a set of
edges, and ι a function that specifies the endpoints of each edge e ∈ E. This is an abstract
mathematical structure, and as such, it can benefit greatly from alternative representations
that are more visually informative, or more naturally encoded in a programming language. For
visual appeal, nothing excels quite as well as a fully labeled drawing of a graph. To enter the
information about a graph into a computer, however, matrices are most appropriate. In this
section we shall consider two ways to represent an undirected or directed graph using matrices:
an adjacency matrix and an incidence matrix.

Definition 10.56. Let G be a graph with V (G) = {v1, v2, . . . , vn}, so that the vertices of G are
ordered. The adjacency matrix of G is a matrix denoted by AG with ij-entry [AG]ij defined
as follows: if G is undirected, then [AG]ij equals the number of edges joining vi and vj; and if G
is directed, then [AG]ij equals the number of edges having tail vi and head vj.

Thus if G is an undirected graph with |V (G)| = n, then AG will be a symmetric n × n
matrix AG with ij-entry equalling the number of edges joining the ith vertex in the sequence
v1, v2, . . . , vn to the jth vertex. The adjacency matrix AG for a digraph G is not symmetric in
general.

Example 10.57. In Figure 13 are the drawings of undirected graphs G, H, and K. For G we
have V (G) = {v1, v2, v3}, and so for i, j ∈ {1, 2, 3} we shall let the ij-entry of AG equal the
number of edges joining vi and vj . Since V (H) = {v1, v2, v3}, the same will be done to determine
AH . Finally, for K we have V (K) = {a, b, c, d, e}, so it’s only natural to order the vertices
alphabetically, and thus [AK ]ij will equal the number of edges joining the vertices labeled by
the ith and jth letters of the alphabet. The adjacency matrices of the graphs are

AG =

0 1 1
1 0 1
1 1 0

, AH =

0 2 0
2 1 1
0 1 0

, AK =


1 2 0 0 1
2 0 1 1 4
0 1 1 3 0
0 1 3 0 1
1 4 0 1 0

. (10.3)

Only G is a simple graph, and the adjacency matrix of a simple graph is always a zero-one
matrix.

The adjacency matrix of a graph is unique up to permutation of its rows and columns,5

with each reordering of the rows and columns corresponding exactly to how the vertices in the
graph’s vertex set are reordered. For example, for the graph H we could let V (H) = {u1, u2, u3},

5The term “up to” is used in connection with declaring that the members of a collection of mathematical
objects are the same or equal (or constitute a single unique object) in all respects except for one. Some examples:
the symbols �, �, �, � are identical up to rotation; the prime factorization of a number is unique up to the order
of its factors (6 = 2 · 3 versus 6 = 3 · 2); and the antiderivative of a function is unique up to an arbitrary constant.
A final example: two n-dimensional vector spaces are the same up to isomorphism, so that essentially the spaces
only differ with respect to the symbols used to denote their vectors.
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where (u1, u2, u3) = (v2, v3, v1), in which case we obtain

AH =

1 1 2
1 0 0
2 0 0

,
which can be found either by relabeling the drawing of H in Figure 13 using u1, u2, u3 in place
of v2, v3, v1, or rearranging the rows and columns of AH in (10.3) in the following order: row 2
to row 1, row 3 to row 2, row 1 to row 3, column 2 to column 1, column 3 to column 2, and
column 1 to column 3. We see that what’s preserved in the two representations of AH are the
number of 0, 1, and 2 entries. ■

Because an adjacency matrix is a square matrix, it can be exponentiated by any positive
integer, and it turns out that the powers of an adjacency matrix are themselves informative. For
the proof of the next theorem we employ the notion of a concatenation of two walks in a graph,
defined as follows: if W1 is a v0, vℓ-walk and W2 is a vℓ, vℓ+m-walk, so that W1 = v0e1v1 · · · eℓvℓ
and W2 = vℓeℓ+1vℓ+1 · · · eℓ+mvℓ+m, then the concatenation of W1 and W2 is the v0, vℓ+m-walk
given by

W1 ∗W2 = v0e1v1 · · · eℓvℓeℓ+1vℓ+1 · · · eℓ+mvℓ+m.

Thus if one walk ends at the same vertex that another walk begins, then the two walks may be
linked to form a longer walk.

Theorem 10.58. Let G be a directed or undirected graph with V (G) = {v1, . . . , vm}. For every
n ∈ Z+, [An

G]ij equals the number of walks of length n from vi to vj for each i, j ∈ {1, . . . ,m}.

Proof. We adopt the view that either endpoint of an undirected edge may be designated the
edge’s tail, with the other endpoint then being the edge’s head, so that the proof can address
the cases when G is undirected or directed simultaneously. The proof will be by induction on
the power n of AG.

Let i, j ∈ {1, . . . ,m}. Since [A1
G]ij = [AG]ij , by definition [A1

G]ij equals the number of edges
in E(G) having tail vi and head vj, and so it equals the number of walks of length 1 from vi to
vj. The basis step of the inductive argument is thus established.

Fix n ∈ Z+, and suppose [An
G]ij equals the number of walks of length n from vi to vj for

each i, j ∈ {1, . . . ,m}. Fixing i, j ∈ {1, . . . ,m},

[An+1
G ]ij = [An

GAG]ij =
m∑
k=1

[An
G]ik[AG]kj. (10.4)

by the definition of the matrix product. Now, for each 1 ≤ k ≤ m, our inductive hypothesis
implies that [An

G]ik equals the number of walks of length n from vi to vk, and [AG]kj equals the
number of walks of length 1 from vk to vj. If there exists a walk Wik of length n from vi to vk,
and also a walk Wkj of length 1 from vk to vj, then the concatenation Wik ∗Wkj is a walk of
length n + 1 from vi to vj. By the multiplication rule of counting, the product [An

G]ik[AG]kj
equals the total number of walks of length n+ 1 from vi to vj for which the penultimate vertex
is vk. Since 1 ≤ k ≤ m, by the sum rule of counting it follows that the sum at right in (10.4),
and hence [An+1

G ]ij itself, equals the total number of walks of length n+ 1 from vi to vj. ■
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Figure 13.

In addition to an adjacency matrix, another way to represent a graph is with an incidence
matrix. The incidence matrix of an undirected graph is always a zero-one matrix, which can
be convenient; however, for most graphs (undirected or directed) the incidence matrix is much
bigger than the adjacency matrix.

Definition 10.59. Let G be a graph with V (G) = {v1, . . . , vn} and E(G) = {e1, . . . , em}, so
that both the vertices and edges of G are ordered. The incidence matrix of G is a matrix MG

with ij-entry [MG]ij defined as follows: If G is undirected, then

[MG]ij =

{
1, if vi is an endpoint of ej
0, otherwise;

(10.5)

and if G is a loopless digraph, then

[MG]ij =


1, if vi is the tail of ej

−1, if vi is the head of ej
0, otherwise.

(10.6)

Example 10.60. We find the incidence matrix for the graph K in Figure 13, the edges of which
are labeled for the purpose. In determining MK using (10.5), it may help to let (a, b, c, d, e) =
(v1, v2, v3, v4, v5), which does not alter the order of the vertices in V (K) = {a, b, c, d, e}. Since
K has 5 vertices and 15 edges, MK will be a 5× 15 matrix:

MK =


0 0 0 0 1 1 0 0 0 0 0 0 0 1 1
1 1 1 1 1 1 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1 0 1 1 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 1 0 0
1 1 1 1 0 0 0 0 0 0 0 0 1 1 0

.
The fact that edges e12 and e15 are loops is reflected in the fact that the 12th and 15th columns
of MK each have just one entry equalling 1. All other columns have precisely two entries
equalling 1, indicating edges with endpoints located at distinct vertices. ■
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Example 10.2 in §10.1 considered the graphs G and H pictured in Figure 1. It was noted
that despite their drawings appearing quite different, the two graphs were in some sense the
same. This notion we now make precise for simple undirected graphs, and later we shall expand
the notion to include graphs that are not simple. We recall that each edge in a simple graph
may be uniquely denoted by a set containing its endpoints.

Definition 10.61. Two simple undirected graphs G and H are isomorphic, written G ≃ H, if
there exists a bijection φ : V (G) → V (H) such that {u, v} ∈ E(G) if and only if {φ(u), φ(v)} ∈
E(H), in which case we call φ an isomorphism. Two graphs are nonisomorphic if they are
not isomorphic.

If G1 and G2 are isomorphic, we may also say G1 is isomorphic to G2. There are many
kinds of isomorphisms in mathematics (for instance two vector spaces may be isomorphic), and
so sometimes the function φ described in Definition 10.61 is called a graph isomorphism.

The notion of a graph isomorphism φ gives rise to a binary relation Φ known as the
isomorphism relation. If G is the collection of all simple undirected graphs, then the
isomorphism relation Φ is precisely that subset of G × G consisting of all possible pairs of
isomorphic graphs. That is,

Φ = {(G1, G2) ⊆ G × G : G1 ≃ G1}.

It is straightforward to verify (as we will soon enough) that Φ is an equivalence relation: for
any G,H,K ∈ G, we have G ≃ G (reflexivity), G ≃ H if and only if H ≃ G (symmetry), and
G ≃ K whenever G ≃ H and H ≃ K (transitivity). Thus the isomorphism relation gives rise
to equivalence classes. We call an equivalence class of graphs associated with an isomorphism
relation an isomorphism class.

Theorem 10.62. The isomorphism relation Φ is an equivalence relation.

Proof. Throughout the proof we shall assume that G, H, and K are simple graphs, and make
use of the notation uv to denote an edge {u, v}.

Let φ : V (G) → V (G) be the identity function, so φ(v) = v for all v ∈ V (G). Clearly φ is a
bijection, and the trivial observation that v1v2 ∈ E(G) if and only if v1v2 ∈ E(G) establishes
that φ is an isomorphism, so that G ≃ G, and thus (G,G) ∈ Φ. The relation Φ is therefore
reflexive.

Next, suppose that (G,H) ∈ Φ, soG ≃ H and there exists an isomorphism φ : V (G) → V (H).
Since φ is bijective it has an inverse φ−1 that is also bijective. Let v1v2 ∈ E(H). There exist
u1, u2 ∈ V (G) for which vk = φ(uk) for k ∈ {1, 2}, so that φ(u1)φ(u2) ∈ E(H), and thus
φ−1(v1)φ

−1(v2) = u1u2 ∈ E(G) since φ preserves edges. Conversely, if φ−1(v1)φ
−1(v2) ∈ E(G),

then the edge-preserving property of φ implies that v1v2 = φ(φ−1(v1))φ(φ
−1(v2)) ∈ E(H).

Having shown that v1v2 ∈ E(H) if and only if φ−1(v1)φ
−1(v2) ∈ E(G), we find φ−1 to be

edge-preserving, hence an isomorphism, and thus H ≃ G. We conclude that (H,G) ∈ Φ, and
therefore Φ is symmetric.

Finally, suppose (G,H), (H,K) ∈ Φ, so G ≃ H and H ≃ K, and there exist isomorphisms
φ : V (G) → V (H) and ψ : V (H) → V (K). Since φ and ψ are bijective, so too is ψ ◦φ. Since φ
and ψ perserve edges, u1u2 ∈ E(G) implies φ(u1)φ(u2) ∈ E(H), which in turn implies

(ψ ◦ φ)(u1)(ψ ◦ φ)(u2) = ψ(φ(u1))ψ(φ(u2)) ∈ E(K).
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As shown in the previous paragraph, φ−1 is an isomorphism, and so too is ψ−1. Suppose
ψ(φ(u1))ψ(φ(u2)) ∈ E(K). Since ψ−1 and φ−1 are edge-preserving, we have

φ(u1)φ(u2) = ψ−1(ψ(φ(u1)))ψ
−1(ψ(φ(u2))) ∈ E(H),

and then u1u2 = φ−1(φ(u1))φ
−1(φ(u2)) ∈ E(G). Thus ψ ◦φ : V (G) → V (K) is an isomorphism,

implying that G ≃ K, and so (G,K) ∈ Φ. Therefore Φ is transitive. ■

The second paragraph of the proof established the following corollary, which was used even
in the third paragraph.

Corollary 10.63. Given simple graphs G and H, if φ : G → H is an isomorphism, then
φ−1 : H → G is also an isomorphism.

A property of a graph G is isomorphic invariant or preserved by isomorphism (or
simply preserved) if all the graphs belonging to the isomorphism class of G have the same
property. For instance, since a graph isomorphism is a bijection, the number of vertices of a
graph is preserved by isomorphism; that is, if G ≃ H are isomorphic, then |V (G)| = |V (H)|.
The number of edges of a graph is also isomorphic invariant, so that |E(G)| = |E(H)|. Moreover,
given an isomorphism φ : V (G) → V (H), a property of the vertices of G is said to be preserved
by isomorphism if v and φ(v) have the same property for each v ∈ V (G). For instance, it happens
that dH(φ(v)) = dG(v) for all v ∈ V (G), and so the degree of a vertex is preserved. Finally,
if any relationship amongst vertices v1, . . . , vn ∈ V (G) remains the same amongst vertices
φ(v1), . . . , φ(vn) ∈ V (H), respectively, then that relationship is preserved by isomorphims. For
instance, the property that {φ(u), φ(v)} ∈ E(H) for any {u, v} ∈ E(G) demonstrates that
adjacency relationships amongst vertices in G are preserved. This property, which is part of the
definition of a graph isomorphism, is what is meant when an isomorphism is said to preserve
edges or be edge-preserving.

We remark now on a matter concerning drawings of graphs having no labels; that is, the
vertices and edges in the drawing have no designation such as a letter, number, or other symbol.
Suppose we were making a study of the family of all unit circles in a rectangular coordinate
system. Each circle would be distinguished from all others by the coordinates (x, y) of its center,
where x and y could be any real numbers. Other than its location, each circle has the same
properties as all the others (e.g. the ratio of the circumference to the radius). The coordinates
of each circle’s center is merely a label, and does not speak to the circle’s innate properties, or
structure. Thus, we could draw a single unit circle in a coordinate-free plane, and think of such
an “unlabeled” circle as being representative of an “equivalence class” of all the unit circles
inhabiting the coordinate system. In analogous fashion, we shall interpret an unlabeled drawing
of a graph as being representative of an isomorphism class of graphs. The drawing exhibits
the adjacency relationship between vertices, or structure, that all members of the class share
in common. The members of the class each have labeled vertices and edges, with the vertices
in particular conceivably being given rectangular coordinates that not only label them, but
also situate them somewhere so as to generate an infinitude of different-looking graphs that
nonetheless all still have the same structure.
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Example 10.64. We consider the simple graphs G = (V,E) and H = (W,F ) given in Figure 1
and discussed in Example 10.2. Define the function φ : V → W as follows:

φ(a) = w, φ(b) = y, φ(c) = u, φ(d) = v, φ(e) = x.

That φ is one-to-one and onto, and hence a bijection, can be seen by inspection. Referring to
the edge sets E and F given in Example 10.2, we also see that {a, b} ∈ E and {φ(a), φ(b)} =
{w, y} ∈ F , {b, c} ∈ E and {φ(b), φ(c)} = {y, u} ∈ F , {c, d} ∈ E and {φ(c), φ(d)} = {u, v} ∈ F ,
and so on. Thus φ preserves edges, and so is an isomorphism. Therefore G is isomorphic to H,
and we write G ≃ H. ■

Theorem 10.65. Suppose G and H are simple undirected graphs, G ≃ H, and φ : V (G) → V (H)
is an isomorphism. Then the following hold:

1. |V (G)| = |V (H)|.
2. |E(G)| = |E(H)|.
3. For all v ∈ V (G), dG(v) = dH(φ(v)).

Proof. Statement (1) of the theorem is immediate from the fact that V (G) and V (H) are finite
sets and φ is a bijection, while statement (2) is immediate from the fact that E(G) and E(H)
are finite sets and φ preserves edges.

We now prove statement (3). Fix v ∈ V (G). Then {φ(v), φ(x)} ∈ E(H) for every x ∈ V (G)
such that {v, x} ∈ E(G), and hence dG(v) ≤ dH(φ(v)). Also, since φ−1 : V (H) → V (G)
is an isomorphism by Corollary 10.63, for every y ∈ V (H) such that {φ(v), y} ∈ E(H) we
find that {v, φ−1(y)} = {φ−1(φ(v)), φ−1(y)} ∈ E(G), and hence dH(φ(v)) ≤ dG(v). Therefore
dG(v) = dH(φ(v)). ■

Example 10.66. We consider the three simple undirected graphs G, H, and K in Figure 14,
and ask whether any two of them (or all three) are isomorphic. All the graphs have 5 vertices
and 7 edges, and while this is necessary for graphs to be isomorphic, it is not sufficient.

Suppose φ : V (G) → V (H) is an isomorphism, and u ∈ V (G) is such that φ(u) = v2. By
statement (3) of Theorem 10.65 it follows that dG(u) = dH(φ(u)) = dH(v2) = 4. However, there
is no vertex in G having degree 4, so that we have arrived at a contradiction. Therefore G and
H are not isomorphic. Since dK(w4) = 4, we also find G and K to not be isomorphic for the
same reason.

u1 u2

u3u4

u5

G

v1

v2

v3v4

v5

H

w1

w4

w2

w5 w3

K

Figure 14.



46

Finally we come to H and K. Both of these graphs have one vertex of degree 4, two of
degree 3, and two of degree 1. We begin to suspect that these graphs are isomorphic, and
we attempt to construct an isomorphism φ : V (H) → V (K). Indeed, define φ(v1) = w1,
φ(v2) = w4, φ(v3) = w2, φ(v4) = w5, φ(v5) = w3. The edge v1v2 ∈ E(H) is preserved, since
φ(v1)φ(v2) = w1w4 ∈ E(K). The remaining six edges of H are likewise preserved, as can easily
be checked. Since φ is found to be an edge-preserving bijection, and thus an isomorphism, we
conclude that H ≃ K. ■

It can be shown that if the adjacency matrices AG and AH of simple graphs G = (V,E) and
H = (W,F ) are equal, then G and H are isomorphic. However, since the adjacency matrix of
a graph with n vertices is uniquely determined only when the vertices have been ordered in
some definitive way, such as v1, v2, . . . , vn, one ordering of the vertices of G or H may result in
AG = AH , while another ordering may result in AG ̸= AH . Thus G and H are not necessarily
nonisomorphic if AG ̸= AH .

Theorem 10.67. Let G = (V,E) and H = (W,F ) be simple graphs with |V | = |W | = n. If the
vertices of G and H can be ordered so that AG = AH , then G ≃ H.

Proof. Suppose the vertices of G and H can be ordered so that AG = AH . So, if we are
initially given V = {v1, . . . , vn} and W = {w1, . . . , wn}, we can find bijections σ, π : [n] → [n]
such that, by letting v′i = vσ(i) and w′

i = wπ(i) for each 1 ≤ i ≤ n, we obtain AG = AH for
V = {v′1, . . . , v′n} and W = {w′

1, . . . , w
′
n}.

Define φ : V → W by φ(v′i) = w′
i, which is clearly a bijection.6 For arbitrary i, j ∈ [n],

suppose {v′i, v′j} ∈ E. Then [AH ]ij = [AG]ij = 1, so that {φ(v′i), φ(v′j)} = {w′
i, w

′
j} ∈ F .

Conversely, if {v′i, v′j} /∈ E, then [AH ]ij = [AG]ij = 0, and so {φ(v′i), φ(v′j)} = {w′
i, w

′
j} /∈ F .

Hence φ preserves edges, is therefore an isomorphism, and we conclude that G ≃ H. ■

Reordering the vertices of graphs G and H in the manner done in the proof of Theorem 10.67
has the effect of rearranging both the rows and columns of AG according to the permutation
function σ, and of AH according to the permutation function π. Thus if AG and AH are known,
and it’s possible to rearrange the rows and columns of, say, AH according to some permutation
function so as to obtain a matrix that is equal to AG, then it follows that G ≃ H.

To determine whether two simple graphs with an abundance of edges are isomorphic, it may
be easier to consider the complements of the graphs and apply the following proposition.

Proposition 10.68. Let G and H be simple graphs. Then G ≃ H if and only if G ≃ H.

Proof. Suppose G ≃ H, and let φ : V (G) → V (H) be an isomorphism. Then {u, v} ∈ E(G)
if and only if {φ(u), φ(v)} ∈ E(H), so that {u, v} /∈ E(G) if and only if {φ(u), φ(v)} /∈ E(H),
and hence {u, v} ∈ E(G) if and only if {φ(u), φ(v)} ∈ E(H). Since V (G) = V (G) and
V (H) = V (H), we find φ : V (G) → V (H) to be a bijection that preserves the edges, and hence
is an isomorphism. Therefore G ≃ H.

6Being a bijection, σ has an inverse σ−1 : [n] → [n]. Now, φ(v′i) = w′
i is equivalent to φ(vσ(i)) = wπ(i), and

substituting σ−1(i) for i yields φ(vi) = wπ(σ−1(i)) for 1 ≤ i ≤ n. This is an alternative formulation of φ that
derives from not reordering the vertices of V = {v1, . . . , vn} at all (so v′i = vi) while letting w′

i = wπ(σ−1(i)). It

can be shown that this new scheme preserves the equality AG = AH .
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The converse may be proven in much the same way, but we have already proven that G ≃ H

implies G ≃ H, and so G ≃ H implies G ≃ H. Now merely note that G = G and H = H. ■

The next proposition informs us that if one simple graph is bipartite and another isn’t, then
they cannot be isomorphic.

Proposition 10.69. Suppose G and H are simple graphs and G ≃ H. Then G is bipartite if
and only if H is bipartite.

Proof. Suppose G = (V,E) is bipartite, (V1, V2) is a bipartition of V , and H = (W,F ). Let
φ : V → W be an isomorphism, and define W1 = φ(V1) and W2 = φ(V2). We show that
(W1,W2) is a bipartition of W .

Suppose w ∈ W1 ∩W2. Then there exist v1 ∈ V1 and v2 ∈ V2 such that φ(v1) = φ(v2) = w,
which violates the one-to-one property of φ, and therefore W1 ∩W2 = ∅.

Since W1 and W2 are subsets of W , we have W1 ∪W2 ⊆ W . Now suppose w ∈ W . Since φ
is onto there exists some v ∈ V such that φ(v) = w. Now, v ∈ Vk for either k = 1 or k = 2, so
that w ∈ φ(Vk) = Wk and hence w ∈ W1 ∪W2. This demonstrates that W ⊆ W1 ∪W2, and
therefore W = W1 ∪W2.

Next suppose that {w1, w2} ∈ F . Then there exist v1, v2 ∈ V such that φ(v1) = w1 and
φ(v2) = w2, and so {φ(v1), φ(v2)} ∈ F . Now, φ−1 : W → V preserves edges since it is itself
an isomorphism, so that {v1, v2} = {φ−1(φ(v1)), φ

−1(φ(v2))} ∈ E, and thus one endpoint of
{v1, v2} must be in V1 and the other in V2. For the sake of argument we assume that vk ∈ Vk,
from which wk ∈ φ(Vk) = Wk follows, and so one endpoint of {w1, w2} is in W1 and the other
in w2. Therefore (W1,W2) is a bipartition of W , and we conclude that H is bipartite.

The proof of the converse derives from the established conditional and the symmetry property
of the isomorphism relation. ■

Definition 10.61 defines what it means for two simple undirected graphs to be isomorphic, and
now we give a definition that applies to undirected graphs that are not necessarily simple (though
they could be). For this more general definition of graph isomorphism we recall that an undirected
graph G may be characterized as an ordered triple (V,E, ι), where ι : E → {{u, v} : u, v ∈ V }
is the incidence function of G.

Definition 10.70. Let G and H be undirected graphs with incidence functions ιG and ιH ,
respectively. We say G and H are isomorphic, written G ≃ H, if there exist bijections
φ : V (G) → V (H) and ψ : E(G) → E(H) such that, for all u, v ∈ V (G) and e ∈ E(G),
ιH(ψ(e)) = {φ(u), φ(v)} if and only if ιG(e) = {u, v}. Such a pair of functions (φ, ψ) is a
(graph) isomorphism.

In Definition 10.70 we have ψ(e) ∈ E(H), and the endpoints of the edge ψ(e) are the
vertices φ(u) and φ(v) in V (H) since ιH(ψ(e)) = {φ(u), φ(v)}. The property that ιH(ψ(e)) =
{φ(u), φ(v)} if and only if ιG(e) = {u, v} is what is meant when it is said that a graph
isomorphism (φ, ψ) preserves edges or preserves incidence functions.

As a notational convenience we shall frequently write (φ, ψ) : G → H to indicate that
φ : V (G) → V (H) and ψ : E(G) → E(H), which after all could be written more compactly
as (φ, ψ) : (V (G), E(G)) → (V (H), E(H)), where (V (G), E(G)) = G and (V (H), E(H)) = H.
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It is a routine matter to verify that if (φ, ψ) : G → H is an isomorphism, then so too is
(φ−1, ψ−1) : H → G. If (φ, ψ) : G→ H is an isomorphism and S is a subgraph of G, then the
image of S under (φ, ψ) is defined to be the subgraph (φ(V (S)), ψ(E(S))) of H.
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10.5 – Graph Connectedness

Given an undirected graph G with distinct vertices u and v, the question may arise whether
there exists a walk between u and v. More broadly, is it possible to walk from any vertex in G
to any other vertex? Certainly the answer is no if G has at least two vertices and one is isolated,
but even in the absence of isolated vertices the answer is not necessarily affirmative.

Definition 10.71. Let G be an undirected graph. Two distinct vertices u, v ∈ V (G) are
connected if there exists a walk between them. The graph G is connected if u and v are
connected for all u, v ∈ V (G) such that u ̸= v. A connected component of G is a connected
subgraph of G that is not a proper subgraph of another connected subgraph of G. A connected
component is trivial if it consists of one vertex and no edges (the trivial graph), otherwise it is
nontrivial. If G is not connected, then it is said to be disconnected.

From the definition we deduce that a graph G is disconnected if and only if there are vertices
u ̸= v in V (G) for which there exists no u, v-walk. From this it follows that any graph consisting
of only one vertex is connected. The empty graph, which has no vertices, is connected in a
vacuous sense. Any operation performed on a connected graph G that results in a new graph
that is disconnected, such as deleting a vertex and its incident edges, is said to disconnect the
graph G.

Proposition 10.72. If G is a connected undirected graph, then for all u ̸= v in V (G) there
exists a u, v-path.

Proof. Suppose G is connected and u, v ∈ V (G) are distinct. Since G is connected it contains
a u, v-walk, and therefore it contains a u, v-path by Theorem 10.32. ■

Typically a connected component of an undirected graph is called simply a component. As
the next proposition establishes, no two components of a graph can have an edge or vertex in
common, and thus any graph is a disjoint union of its components.

Proposition 10.73. The connected components of an undirected graph G are mutually disjoint.

Proof. Suppose that C1 and C2 are distinct components of graphG, and that w ∈ V (C1)∩V (C2).
Fix u, v ∈ V (C1) ∪ V (C2), where u ̸= v. If u, v ∈ V (C1) or u, v ∈ V (C2), then u and v are
connected since C1 and C2 are connected. Suppose u ∈ V (C1) and v ∈ V (C2). Then there is a
u,w-walk W1 and a w, v-walk W2, so that the concatenation W1 ∗W2 is a u, v-walk and thus u
and v are again connected. It follows that C1 ∪ C2 is a connected subgraph of G, and since C1

cannot be a proper subgraph of another connected subgraph of G, we must have C1 = C1 ∪ C2

and hence C2 ⊆ C1. But C2 itself cannot be a proper subgraph of another connected subgraph
of G, so that we are forced to conclude that C1 = C2, which contradicts the hypothesis that C1

and C2 are distinct. Therefore V (C1) ∩ V (C2) = ∅, so that C1 and C2 are disjoint. Since C1

and C2 are arbitrary components of G, the statement of the proposition follows. ■

The next proposition establishes that the property of being connected or disconnected is an
isomorphic invariant.
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Proposition 10.74. If undirected graphs G and H are isomorphic, then they are either both
connected or both disconnected.

Proof. Suppose G ≃ H, and let (φ, ψ) be a graph isomorphism. Suppose G is connected, and
let v, v̂ ∈ V (H) with v ̸= v̂. Because φ : V (G) → V (H) is onto, there exist u, û ∈ V (G) such
that v = φ(u) and v̂ = φ(û); and because φ is one-to-one, we have u ≠ û. Now, G being
connected, there is a walk u0e1u1 · · ·un−1enun in G with u0 = u and un = û. Let

W = φ(u0)ψ(e1)φ(u1) · · ·φ(un−1)ψ(en)φ(un),

and denote the incidence functions of G and H by ιG and ιH . Since ιG(ek) = {uk−1, uk} for each
1 ≤ k ≤ n, we have ιH(ψ(ek)) = {φ(uk−1), φ(uk)} with φ(u0) = v and φ(un) = v̂, and so W is a
v, v̂-walk in H. Therefore H is connected, and since a symmetrical argument will show that G
is connected whenever H is, we conclude that G is connected if and only if H is connected. ■

Not only is the property of connectedness an isomorphic invariant, so too is the number of
components that a graph possesses.

Proposition 10.75. If undirected graphs G and H are isomorphic, then they have the same
number of connected components.

Proof. Suppose G ≃ H, and G has n connected components. If n = 1 then G is connected,
whereupon Proposition 10.74 informs us that H is also connected, and so both G and H have
one component. We henceforth assume that n ≥ 2, so that G is disconnected, and hence so too
is H.

Let (φ, ψ) : G→ H be a graph isomorphism, let C be a component of G, and denote by D
the image of C under (φ, ψ), so that V (D) = φ(V (C)) and E(D) = ψ(E(C)). Now, C ≃ D
since (φ|V (C), ψ|E(C)) : C → D is an isomorphism, and so D is connected by Proposition 10.74.
In particular this implies that D ⊂ H, since D is a subgraph of H, but H is disconnected.

To show that D is a component of H, it remains to show that D is not a proper subgraph of
another connected subgraph of H. Suppose on the contrary that D ⊂ D̂ ⊆ H and D̂ is connected.
Let Ĉ be the image of D̂ under the isomorphism (φ−1|V (D̂), ψ

−1|E(D̂)), so Ĉ ≃ D̂ and Ĉ is

connected by Proposition 10.74. Observing that V (Ĉ) = φ−1(V (D̂)) and E(Ĉ) = ψ−1(E(D̂)),
we have

D ⊂ D̂ ⇒ [V (D) ⊂ V (D̂)] ∨ [E(D) ⊂ E(D̂)]

⇒ [φ(V (C)) ⊂ V (D̂)] ∨ [ψ(E(C)) ⊂ E(D̂)]

⇒ [V (C) ⊂ φ−1(V (D̂))] ∨ [E(C) ⊂ ψ−1(E(D̂))]

⇒ [V (C) ⊂ V (Ĉ)] ∨ [E(C) ⊂ E(Ĉ)]

⇒ C ⊂ Ĉ,

and hence C is a proper subgraph of another connected subgraph of G. As this is a contradiction,
we conclude that D is a component of H. Since C is an arbitary component of G, it follows
that each component C of G has a corresponding component D of H that is the image of C
under the isomorphism (φ, ψ). The components of G are disjoint by Proposition 10.73, as are



51

the components of H, and because φ : V (G) → V (H) and ψ : E(G) → E(H) are bijections,
the correspondence between the components of G and the components of H is itself a bijection.
Therefore G and H have the same number of components. ■

For the next definition, recall that for a graph G with v ∈ V (G), the symbol G− v denotes
the subgraph of G induced by V (G)− {c}. This subgraph obtains from G by deleting v and all
edges in E(G) incident to v. In contrast, if e ∈ E(G), then G− e is the subgraph of G obtained
by deleting the edge e.

Definition 10.76. Let G be an undirected graph. We say v ∈ V (G) is a cut-vertex of G if
the graph G− v has more connected components than G. We say e ∈ E(G) is a cut-edge (or
bridge) of G if G− e has more connected components than G.

Proposition 10.77. Let G be a connected simple graph. Then c ∈ V (G) is a cut-vertex of G
if and only if there exist vertices u ̸= v in V (G) − {c} such that every u, v-walk in G passes
through c.

Proof. Suppose for every u ̸= v in V (G)− {c} there exists a u, v-walk in G that does not pass
through c. Let u and v be arbitary distinct vertices of G− c. Since u, v ∈ V (G)− {c}, there
is a u, v-walk W in G that does not pass through c; and since W does not pass through c, it
does not traverse any edge e ∈ E(G) that is incident to c. Hence all the vertices and edges
of W belong to the subgraph G− c, which implies that W is a u, v-walk in G− c. Since any
two distinct vertices in G− c are connected, we conclude that G− c is a connected graph, and
therefore c is not a cut-vertex of G.

For the converse, suppose there exist vertices u ̸= v in V (G)− {c} such that every u, v-walk
in G passes through c. Then there is no walk that connects u and v in the subgraph G − c,
implying that G− c is disconnected, and therefore c is a cut-vertex of G. ■

For the statement of the next proposition we say an edge e in a graph G is a cycle edge if
e is in the edge set of some cycle in G.

Proposition 10.78. An edge of a graph is a cut-edge if and only if it is not a cycle edge.

Proof. Let G be a graph and suppose e is a cycle edge in a connected component H of G. If
e is a loop or there is an edge parallel to e, then H − e is connected and e is not a cut-edge.
We henceforth assume e is neither a loop nor an element of a multiedge. Fix u, v ∈ V (H) with
u ̸= v. Then there is a u, v-walk W in H. If W does not traverse e then certainly W is a
u, v-walk in H − e, and so assume that W traverses e. We have W = u1u2 · · ·un for some n ≥ 2,
with u = u1, v = un, and e = ukuk+1 for some 1 ≤ k ≤ n − 1. Also e is an edge in a cycle
C = c1c2 · · · cmc1, so that e = cjcj+1 for some 1 ≤ j ≤ m (we define cm+1 = c1). The direction of
travel on C we choose to be such that cj = uk and cj+1 = uk+1. We now observe that the walk
with vertex sequence u1u2 · · ·uk−1cjcj−1 · · · c1cm · · · cj+1uk+2uk+3 · · ·un is a u, v-walk in H − e.
We conclude that H − e is connected, and therefore e is not a cut-edge.

Now suppose that edge e in component H is not a cut-edge. Certainly e is a cycle edge if it
is a loop or an element of a multiedge, as we assume e is neither of these. We have e = uv for
distinct u, v ∈ V (H). Now, since H − e is connected, there is a u, v-walk W = u1u2 · · ·un with
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u = u1 and v = un in H − e. Since e = unu1, we find that u1u2 · · ·unu1 is a cycle in H, and
therefore e is a cycle edge. ■

Proposition 10.79. Suppose v is an endpoint of a cut-edge e of the graph G, and there is no
loop at v. Then v is a cut-vertex of G if and only if dG(v) ̸= 1.

Proof. We shall start by assuming that G = (V,E) is connected. Let ι be the incidence function
for G. Since a cut-edge cannot be a loop, ι(e) = {u, v} for some u ̸= v. By the definition of
cut-edge, G− e has two connected components: C1 containing v and C2 containing u.

Suppose dG(v) = 1. Then e is the only edge incident to v, so that v is isolated in G − e,
and we have C1 = ({v},∅) and C2 = (V − {v}, E − {e}). In particular we see that G − v is
connected since G− v = C2, and hence v is not a cut-vertex of G.

For the converse, suppose dG(v) ̸= 1. Then dG(v) ≥ 2 since G is connected, and so there
is some f ∈ E such that e ̸= f and f is incident to v. We observe that ι(f) ̸= {u, v}, since
otherwise e and f would be parallel edges, and then e could not possibly be a cut-edge of G.
Indeed, because there is no loop at v, we find that ι(f) = {v, w} for some w ̸= u, v. Again G− e
has two components, with C2 = (V − {v}, E − {e}) as before, but now C1 contains the walk
vfw. We now delete v from G− e to obtain G− v, and observe that G− v has two components:
C2, and a subgraph of C1 that contains at least the vertex w. Therefore v is a cut-vertex of G.

Finally, if G is not connected, then we need only carry out the proof above on the component
C of G that contains the edge e, so that e ∈ E(C) and u, v ∈ V (C). In this case e is a cut-edge
of C. ■

The next proposition states that a connected undirected graph G consisting of n vertices
must have at least n− 1 edges.

Proposition 10.80. If G is a connected graph and |V (G)| = n, then |E(G)| ≥ n− 1.

Proof. Let P (n) be the statement “If G is a loopless connected graph and |V (G)| = n, then
|E(G)| ≥ n− 1.” We shall use induction to prove P (n) for all n ∈ Z+, then prove the statement
of the proposition.

To start, we observe that P (1) is trivially true. Suppose P (n) to be true for some n ≥ 1,
and let G be a loopless connected graph with |V (G)| = n+ 1. We must show that |E(G)| ≥ n,
but by way of contradiction suppose that |E(G)| ≤ n − 1. For V (G) = {v1, . . . , vn+1}, the
Handshaking theorem (Theorem 10.21) implies that

n+1∑
i=1

dG(vi) = 2|E(G)| ≤ 2(n− 1).

This inequality cannot be satisfied if d(vi) ≥ 2 for all 1 ≤ i ≤ n + 1, so there exists some
v ∈ V (G) such that dG(v) ≤ 1. Indeed dG(v) = 1 since G is connected. Remove this vertex v
and its single incident edge e to obtain the subgraph G− v. Clearly e is a cut-edge: deleting it
isolates v and thereby disconnects G; and since there is no loop at v, Proposition 10.79 implies
that v is not a cut-edge, and hence G− v is a loopless connected graph with |V (G− v)| = n
and |E(G − v)| ≤ n − 2. However, this contradicts our inductive hypothesis P (n), so that
|E(G)| ≥ n must be the case, and we have proven P (n + 1). Therefore P (n) is true for all
n ∈ Z+.
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Now suppose that G is a connected graph with |V (G)| = n. Let E ′(G) consist of the edges
in E(G) that are not loops, so that H = (V (G), E ′(G)) is a subgraph of G that is itself a
loopless connected graph consisting of n vertices. Then |E ′(G)| ≥ n − 1 by P (n), and since
|E(G)| ≥ |E ′(G)| the conclusion of the proposition follows. ■

Corollary 10.81. If G is a graph with n vertices and k components, then |E(G)| ≥ n− k.

Proof. Suppose G is a graph with n vertices and components G1, . . . , Gk. For each 1 ≤ i ≤ k
let ni = |V (Gi)|. Then |E(Gi)| ≥ ni − 1 by Proposition 10.80, and hence

|E(G)| =
k∑

i=1

|E(Gi)| ≥
k∑

i=1

(ni − 1) =
k∑

i=1

ni − k = n− k

as claimed. ■

Proposition 10.80 does not assume G is a simple graph. The next proposition furnishes some
results concerning the property of connectedness as it relates to the number of edges in a simple
undirected graph.

Proposition 10.82. Let G be a simple undirected graph.

1. If G has k connected components, with the ith component having ni vertices for 1 ≤ i ≤ k,
then

|E(G)| ≤
k∑

i=1

C(ni, 2). (10.7)

2. If G has n vertices and k connected components, then

|E(G)| ≤ (n− k)(n− k + 1)

2
.

3. If G has n vertices and

|E(G)| > (n− 1)(n− 2)

2
,

then G is connected.

Proof.
Proof of (1). Suppose G has components C1, . . . , Ck such that |V (Ci)| = ni. In a simple graph
with n vertices the greatest possible number of edges is realized when every vertex is joined
to every other vertex to form Kn, the complete graph on n vertices. Thus the number of
edges in G is maximal if and only if its ith component is the complete graph on ni vertices for
each i ∈ {1, . . . , k}.7 Since |E(Kni

)| = C(ni, 2) by Proposition 10.7, the inequality (10.7) follows.

Proof of (2). Suppose G has n vertices and components C1, . . . , Ck. Let |V (Ci)| = ni for each
i ∈ {1, . . . , k}, so that n = n1 + · · ·+ nk. From part (1) we have

|E(G)| ≤
k∑

i=1

ni!

2!(ni − 2)!
=

1

2

k∑
i=1

ni(ni − 1) =
1

2

(
k∑

i=1

n2
i − n

)
,

7Strictly speaking we require that Ci ≃ Kni
.
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so to complete the proof it will be sufficient to show that, for all k ≥ 1, if n =
∑k

i=1 ni for
n1, . . . , nk ∈ Z+, then

k∑
i=1

n2
i ≤ (n− k)(n− k + 1) + n. (10.8)

We accomplish this by induction on k. For the basis step we set k = 1, and note that (10.8)
then reduces to the verity n2

1 ≤ n2
1.

For the inductive step, fix k ≥ 1 and assume that (10.8) holds whenever n =
∑k

i=1 ni for

n1, . . . , nk ∈ Z+. Now suppose n =
∑k+1

i=1 ni for n1, . . . , nk+1 ∈ Z+. We must show that

k+1∑
i=1

n2
i ≤ (n− k − 1)(n− k) + n. (10.9)

Since
∑k

i=1 ni = n− nk+1, by the inductive hypothesis we have

k∑
i=1

n2
i ≤ [(n− nk+1)− k][(n− nk+1)− k + 1) + (n− nk+1),

and so, adding n2
k+1 to both sides and substituting

∑k
i=1 ni for n− nk+1,

k+1∑
i=1

n2
i ≤ n2

k+1 +

(
k∑

i=1

ni − k

)(
k∑

i=1

ni − k + 1

)
+

k∑
i=1

ni.

To obtain (10.9) we thus need to show that

n2
k+1 +

(
k∑

i=1

ni − k

)(
k∑

i=1

ni − k + 1

)
+

k∑
i=1

ni ≤

(
k+1∑
i=1

ni − k − 1

)(
k+1∑
i=1

ni − k

)
+

k+1∑
i=1

ni.

This is accomplished by expanding the products on each side of the inequality and combining
like terms to obtain the equivalent inequality

(nk+1 − 1)

(
k∑

i=1

ni − k

)
≥ 0.

This inequality is true since ni ≥ 1 for all 1 ≤ i ≤ k + 1, and so the proof is done.

Proof of (3). The statement is vacuously true when n = 1, so suppose G has n ≥ 2 vertices.
Suppose further that G is disconnected. Then G has k ≥ 2 connected components, and so
|E(G)| ≤ 1

2
(n− k)(n− k + 1) by part (2). Now, k ≤ n since each component of G must contain

at least one vertex, and so, observing that

(n− k)(n− k + 1)

2
≤ (n− 2)(n− 1)

2

for each 2 ≤ k ≤ n, we conclude that |E(G)| ≤ 1
2
(n−2)(n−1). Therefore |E(G)| > 1

2
(n−1)(n−2)

if G is connected. ■

The notion of connectedness is more nuanced when applied to digraphs, with there being
two senses in which a digraph may be said to be “connected.” In order to define the “weaker”
sense of connectedness, we need the notion of the “underlying graph” of a digraph.
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Definition 10.83. Let D be a digraph, and for each e ∈ E(D) let ξ(e) be an undirected edge
whose endpoints coincide with the head and tail of e. The underlying graph of D is the
undirected graph G for which V (G) = V (D) and E(G) = {ξ(e) : e ∈ E(D)}.

We see in the definition that ξ is a function on E(D) that strips away a directed edge’s
orientation and thereby transforms it into an undirected edge. Thus the underlying graph of a
digraph is the undirected graph that results when all the arrows in the digraph’s drawing have
been removed.

Recalling that vertices u and v are said to be mutually reachable in a digraph D if there
exists both a directed u, v-walk and a directed v, u-walk in D, we make the following definition.

Definition 10.84. Let D be a digraph. We say D is weakly connected if its underlying
graph is connected, and strongly connected if every pair of vertices u, v ∈ V (D) are mutually
reachable.

A strongly connected digraph D is also weakly connected, since the mutual reachability of
any two vertices u, v ∈ V (D) implies there exists an undirected u, v-walk in the underlying
graph of D, and hence u and v are connected as defined in Definition 10.71.
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10.6 – Vertex and Edge Connectivity

The connectivity of a connected graph G is some measure of the degree to which G is
connected, an inquiry that typically begins by asking what is the minimum number of vertices
or edges that must be removed from G in order to disconnect the graph.

Definition 10.85. Let G be an undirected graph. A vertex cut of G is any set S ⊆ V (G) such
that the graph G− S is either disconnected or has only one vertex. If K̇(G) is the collection of
all vertex cuts of G, then the vertex connectivity of G is

κ̇(G) = min{|S| : S ∈ K̇(G)},

with any S ∈ K̇(G) such that |S| = κ̇(G) being a minimal vertex cut. We say G is
k-vertex-connected (or k-connected) if κ̇(G) ≥ k.

Certainly G−∅ is disconnected if G is disconnected, in which case ∅ ∈ K̇(G) and hence
κ̇(G) = 0. If G is a complete graph, so that G ≃ Kn for some n ≥ 1, then G− S is connected
for any S ⊆ V (G), and hence the only possible vertex cut is one in which all but one vertex
in V (G) is removed from the graph. Therefore κ̇(G) = n − 1 whenever G ≃ Kn. The reader
should verify that κ̇(G) ≤ |V (G)| − 2 whenever G is a noncomplete graph.

Definition 10.86. Let G be an undirected graph. An edge cut of G is any set S ⊆ E(G) such
that the graph G− S is disconnected. If K̄(G) is the collection of all edge cuts of G, then the
edge connectivity of G is

κ̄(G) = min{|S| : S ∈ K̄(G)},
with any S ∈ K̄(G) such that |S| = κ̄(G) being a minimal edge cut. We say G is k-edge-
connected if κ̄(G) ≥ k.

If G is disconnected, then ∅ ⊆ E(G) is such that G−∅ is disconnected, and so κ̄(G) = 0
since ∅ ∈ K̄(G). It is also the case that κ̄(G) = n− 1 whenver G ≃ Kn, since each vertex in Kn

is joined by precisely n−1 edges to the other vertices in the graph. Thus κ̇(Kn) = κ̄(Kn) = n−1.
The dot and bar decorations in the symbols κ̇(G) and κ̄(G) are not standard notations, but

because vertices are frequenty denoted by dots and edges by line segments, it should be easy to
remember which symbol pertains to vertex connectivity and which to edge connectivity.8

Whilst on the subject of convenient notations, we define one more that does in fact pervade
the literature: given an undirected graph G and sets S, T ⊆ V (G), define [S, T ] ⊆ E(G) to be
the set of edges in E(G) with one endpoint in S and the other in T . The reader may verify that
[S, Sc] is an edge cut for G if, and only if, ∅ ̸= S ⊂ V (G) and Sc = V (G)− S.

Lemma 10.87. Let G be a simple noncomplete connected graph and ∅ ̸= S ⊂ V (G). If
[S, Sc] is an edge cut for G such that every vertex in S is adjacent to every vertex in Sc, then
|[S, Sc]| ≥ |V (G)| − 1.

8Many authors use κ and λ where we use κ̇ and κ̄, respectively. The use of the Greek letter κ (kappa), which
corresponds to k in the Latin alphabet, is motivated by the k sound in the word “cut.”
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Proof. Let n = |V (G)| and k = |S|. Then 1 ≤ k ≤ n − 1 since ∅ ̸= S ⊂ V (G), so that
(k − 1)(n− k − 1) ≥ 0, and hence k(n− k) ≥ n− 1. Also |[S, Sc]| = |S||Sc| since each v ∈ S is
joined by |Sc| edges to each vertex in Sc. Observing that |Sc| = n− k, we now have∣∣[S, Sc]

∣∣ = |S||Sc| = k(n− k) ≥ n− 1 = |V (G)| − 1,

finishing the proof. ■

For the statement of the next theorem we define the minimal degree of an undirected
graph G, denoted by δ(G), to be the smallest degree attained by the vertices of G; that is,

δ(G) = min{dG(v) : v ∈ V (G)}.

Thus if G has an isolated vertex, then δ(G) = 0.

Theorem 10.88. Let G be a simple connected graph. Then κ̇(G) ≤ κ̄(G) ≤ δ(G).

Proof. Let v ∈ V (G) be such that dG(v) = δ(G). Then δ(G) edges e1, . . . , eδ(G) are incident to
v, so that F = {e1, . . . , eδ(G)} is an edge cut for G. Since κ̄ is the cardinality of a minimal edge
cut, we have κ̄(G) ≤ |F | = δ(G).

If G is complete, so that G ≃ Kn for some n ≥ 1, then each of the n vertices of G is joined
by a single edge to each of the other n − 1 vertices, and so the minimum number of edges
required to disconnect G is n− 1; that is, κ̄(G) = n− 1. Meanwhile κ̇(G) = n− 1 by definition
in this case, and we conclude that κ̇(G) ≤ κ̄(G).

We now show that κ̇(G) ≤ κ̄(G) under the assumption that G is noncomplete. For a minimal
edge cut [S, Sc], suppose every vertex in S is adjacent to every vertex in Sc. Then Lemma 10.87
implies that

κ̄(G) = |[S, Sc]| ≥ |V (G)| − 1 > κ̇(G).

The only other possibility is that at least one vertex u ∈ S is not adjacent to at least one
vertex v ∈ Sc. Let C1 be the set of neighbors of u in Sc, and let C2 be the set of vertices in
S − {u} having at least one neighbor in Sc. Thus

C1 = NG(u) ∩ Sc and C2 =
{
x ∈ S − {u} : NG(x) ∩ Sc ̸= ∅

}
.

Let C = C1 ∪ C2. Since E(G− C1) lacks those edges in E(G) that join u ∈ S to any y ∈ Sc,
and E(G− C2) lacks those edges in E(G) that join any x ∈ S − {u} to any y ∈ Sc, the graph
G − C possesses no edges that join any vertex in S − C2 (which at least contains u) to any
vertex in Sc (which at least contains v). Thus G− C has connected components S − C2 and
Sc − C1, and we find that C is a vertex cut for G. Moreover, each x ∈ C1 corresponds to a
unique edge {u, x} ∈ [S, Sc], and each x ∈ C2 (so x ̸= u) can be made to correspond to a unique
edge {x, y} ∈ [S, Sc] by choosing some particular y ∈ NG(x) ∩ Sc. In this way we obtain a
one-to-one correspondence between the vertices of C and some subset of [S, Sc], and therefore
κ̄(G) = |[S, Sc]| ≥ |C| ≥ κ̇(G). This finishes the proof. ■

In the proof of Theorem 10.88 we in fact found that κ̇(G) = κ̄(G) in the case when G is
complete. The converse is also true and is left as an exercise for the reader: If κ̇(G) = κ̄(G),
then G is complete.
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Example 10.89. For the graph G in Figure 15, the set {b} ⊆ V (G) is a vertex cut, and hence
b itself is a cut-vertex. Since there is no smaller subset of V (G) that is a vertex cut for G, we
conclude that κ̇(G) = 1. To determine the edge connectivity of G, we first observe that the
deletion of any one edge from the graph does not disconnect it; however, deletion of edges ab and
be (or bc and bd) does disconnect the graph, so that S = {ab, be} is an edge cut, and therefore
κ̄(G) = 2. By inspection it’s seen that δ(G) = 2, and so in this case κ̇(G) < κ̄(G) = δ(G).

Now we consider graph H in Figure 15. There is one cut-vertex, namely c, so that {c}
is a vertex cut and hence κ̇(H) = 1. Turning to the question of edge connectivity, we find
that deleting any one of the 15 edges does not disconnect H, nor does deleting any two edges.
Because δ(H) = 3 and we must have κ̄(H) ≤ δ(H) by Theorem 10.88, it becomes clear that
κ̄(H) = 3. In particular S = {bc, ac, ch} is an edge cut of cardinality 3. Once again we have
κ̇(H) < κ̄(H) = δ(H).

Finally we cast our attention toward graph K in Figure 15. Deletion of any one of the six
vertices does not disconnect K, nor does deleting any two of the vertices. Deleting a, d, and
f leaves the cycle bce, which of course is a connected graph. Similarly, deleting b, c, and e
leaves the cycle adf . Indeed, deleting any three vertices does not disconnect K, so we must
have κ̇(K) ≥ 4. However, we also see that δ(K) = 4, so 4 ≤ κ̇(K) ≤ κ̄(K) ≤ δ(K) = 4, and
therefore κ̇(K) = κ̄(K) = δ(K) = 4. ■

Example 10.90. Here we investigate the vertex and edge connectivity of complete bipartite
graphs Km,n for m,n ∈ Z+, which are always connected. First we consider K1,5, shown at left
in Figure 16. Deleting u disconnects the graph, so that κ̇(K1,5) = 1. Also, deleting any one edge
disconnects the graph, so κ̄(K1,5) = 1. We have κ̇(K1,5) = κ̄(K1,5) = 1.

Now we examine K2,3, shown at right in Figure 16. Deleting any single vertex results in a
graph that is still connected. Indeed, deleting either u1 or u2 results in the graph K1,3, while
deleting one of the vertices v1, v2, or v3 yields the graph K2,2. Deleting both u1 and u2 does
disconnect the graph, however, so κ̇(K2,4) = 2. As for the edge connectivity, deleting any single
edge fails to disconnect the graph, but deleting edges u1v1 and u2v1 does disconnect it. Therefore
κ̇(K2,4) = κ̄(K2,4) = 2.

Finally we turn to Km,n, where V (Km,n) has a bipartition (U, V ) with U = {u1, . . . , um}
and V = {v1, . . . , vn}. Without loss of generality we assume that 1 ≤ m ≤ n. Deleting a single
vertex in U yields the graph Km−1,n, while deleting a single vertex in V yields Km,n−1. From
these observations it is clear that deleting 1 ≤ i ≤ m vertices from U and 1 ≤ j ≤ n vertices
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from V results in the graph Km−i,n−j, and so the least number of vertices that must be deleted
in order to disconnect the graph is m (with the set U being the associated minimal vertex cut).
Hence κ̇(Km,n) = m, and since δ(Km,n) = m and κ̇(Km,n) ≤ κ̄(Km,n) ≤ δ(Km,n), it is clear that
κ̇(Km,n) = κ̄(Km,n) = δ(Km,n) = m if m ≤ n. ■
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10.7 – Eulerian and Hamiltonian Walks

In this section we consider two kinds of walks in a graph G, whether directed or undirected:
a kind that traverses every edge of G exactly once, and a kind that passes through every vertex
of G exactly once. Before wading in any further we need to introduce some terminology.

Definition 10.91. Let G be an undirected graph or digraph. An Eulerian trail in G is a trail
that traverses every edge of G, and an Eulerian circuit in G is a circuit that traverses every
edge of G. A graph is Eulerian if it contains an Eulerian circuit.

A Hamiltonian path in G is a path that passes through every vertex of G, and a Hamil-
tonian cycle in G is a cycle that passes through every vertex of G. A graph is Hamiltonian
if it contains a Hamiltonian cycle.

If G is a trivial graph, so that it possesses only one vertex v and no edges, then the trivial
walk v is considered to be both an Eulerian circuit and a Hamiltonian cycle in G. Thus any
trivial graph is both Eulerian and Hamiltonian, as is any graph consisting of two or more vertices
and no edges.

Eulerian trails and circuits we shall collectively call Eulerian walks, while Hamiltonian
paths and cycles are Hamiltonian walks. Being a trail, an Eulerian trail in G must traverse
every edge of G exactly once, which necessarily implies that it must pass through every vertex
of G at least once. An Eulerian circuit is simply a closed Eulerian trail. A Hamiltonian path in
G, being a path, must pass through every vertex of G exactly once, but need not traverse every
edge (consider a graph with parallel edges or a loop). A Hamiltonian cycle passes through every
vertex of G exactly once, except that it ends at the same vertex where it starts.

Though the definitions we’ve furnished thus far in this section apply to both undirected
graphs and digraphs, we shall henceforth restrict our attention to the former in all theoretical
developments and examples. We consider Eulerian walks first (with special attention given to
circuits), then turn to Hamiltonian walks (emphasizing cycles).

The following lemma will be needed for part of the proof of our first theorem concerning
Eulerian graphs.

Lemma 10.92. Let G be an undirected graph. If dG(v) ≥ 2 for all v ∈ V (G), then G contains
a cycle.

Proof. Suppose every vertex of G has degree at least 2. Any loop in G is a cycle, and any
parallel edges in G also form a cycle, so we assume henceforth that G is a simple graph. As usual
we take G to be finite, so |V (G)| is an upper bound on the set of all possible path lengths in G.
Let P be a path of maximum possible length, with starting vertex v1. Since dG(v1) ≥ 2 and G
is simple, v1 is adjacent to some vertex v2 ̸= v1; and since dG(v2) ≥ 2, v2 must be adjacent to
some vertex v3 ̸= v1. Hence P has vertex sequence v1v2 · · · vn for some n ≥ 3. Now, dG(vn) ≥ 2
implies that vn is adjacent to at least one other vertex besides vn−1, but all the neighbors of vn
must already be contained in P . Indeed, if this were not the case, then P could be extended
to an (n+ 1)st vertex, which contradicts the hypothesis that P has maximum length. Thus,
besides vn−1, the vertex vn must have a neighbor vk for some 1 ≤ k ≤ n − 2, and therefore
C = vkvk+1 · · · vnvk is a cycle in G. ■
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It will be convenient to define a graph G to be even if dG(v) is even for all v ∈ V (G), and
odd if dG(v) is odd for all v ∈ V (G). Any graph with at least one vertex and no edges is even.

Theorem 10.93. Let G be a nonempty undirected graph. Then G is Eulerian if, and only if, G
is even and has at most one nontrivial connected component.

Proof. We first consider the case when G is a trivial graph with vertex v. Then G is Eulerian,
has no nontrivial connected component, and dG(v) = 0 (an even number), and so the statement
of the theorem is trivially true. Henceforth we assume that G possesses at least one edge.

Suppose G is Eulerian, and for n ≥ 1 let C = v0e1v1 · · · envn with v0 = vn be an Eulerian
circuit. We observe that C is a nontrivial connected subgraph of G: any two distinct vertices vi
and vj in C, where i < j, are connected by a walk of the form viei+1vi+1 · · · ejvj, and therefore
C must be contained in some nontrivial connected component H of G. Since C traverses every
edge in G, it follows that H must contain all the edges in G, and hence any other connected
component that G may possess must have no edges and so be trivial. This proves that G has at
most one nontrivial connected component.

We now show that dG(v) is even for all v ∈ V (G). Any isolated vertex of G has degree 0,
and so it remains to reckon with the vertices in the nontrivial connected component H of G
(which exists since we are assuming E(G) ̸= ∅). First, every v ∈ V (H) must have an incident
edge, since otherwise v would constitute a trivial component of G and so not be contained in
H. Then, since the Eulerian circuit C traverses every edge in H, and hence passes through
every endpoint of every edge, it follows that C passes through every v ∈ V (H). Let v be an
arbitrary vertex in H, let e be incident to v, and commence to travel through the vertex-edge
sequence of C starting at e. Since C passes through every edge in G precisely once, we’ll know
we’ve traveled the circuit precisely once as soon as we arrive back at e. Now, each time we
encounter v while navigating the circuit, we must either enter and exit v by two distinct edges
we’ve not traversed before, or else traverse a loop at v. Thus the edges incident to v consist of
enter/exit pairs and loops. Each enter/exit pair and each loop contribute 2 to the degree of v,
and therefore dG(v) is even.

The converse we prove using strong induction on the number of edges in G. Let P (n) be
the statement “If G is even, has at most one nontrivial component, and |E(G)| = n, then G is
Eulerian.” If |E(G)| = 0, then G is a trivial graph or a disjoint union of trivial graphs, hence
Eulerian, and therefore P (0) is true. Now fix n ≥ 0, and suppose P (k) is true for all 0 ≤ k ≤ n.
Let G be an even graph with at most one nontrivial component and n+ 1 edges. Then G has
precisely one nontrivial component H containing all the edges, and possibly one or more trivial
components that need not concern us. The connected graph H has no isolated points and must
itself be even, so that dH(v) ≥ 2 for all v ∈ V (H), and hence H contains a cycle C by Lemma
10.92. If H = C, then C is an Eulerian circuit in G and we’re done; otherwise, since C must
have at least one edge, deleting its edges from H yields a new graph H ′ with V (H ′) = V (H)
and 0 < |E(H ′)| ≤ n (we note that E(H ′) = ∅ implies H = C). The graph H ′ is also even,
since dH′(v) = dH(v) if v /∈ V (C), and dH′(v) = dH(v)− 2 if v ∈ V (C). It may be that H ′ is
disconnected, but each nontrivial connected component of H ′ must be an even graph with at
most n edges, and so is Eulerian by our inductive hypothesis. Any trivial component of H ′

must be a vertex v ∈ V (C) such that dH(v) = 2.
Let K be a nontrivial component of H ′, so there is no e ∈ E(H ′) joining any u ∈ V (K) to any

v ∈ V (H)−V (K). Suppose K contains no vertex in the cycle C, so that V (C) ⊆ V (H)−V (K).
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Then, since the edges in E(H)− E(H ′) only join vertices in V (C), there is no edge e ∈ E(H)
joining any u ∈ V (K) to any v ∈ V (H)− V (K), and hence H is disconnected—a contradiction.
We conclude that each nontrivial component of H ′ must contain a vertex in C, in addition to
being Eulerian.

Let C have vertex sequence c1c2 · · · cmc1, suppose H ′ has ℓ ≥ 1 nontrivial components, and
for 1 ≤ i1 < · · · < iℓ ≤ m let ci1 , . . . , ciℓ be such that there exists a component H ′

j of H ′

that contains vertex cij of C . Let Cj be an Eulerian circuit in H ′
j with starting vertex cij ,

and in the graph H let Wj be the walk on C from cij to cij+1
, designating ciℓ+1

:= ci1 . Then
C1 ∗W1 ∗ C2 ∗W2 ∗ · · · ∗ Cℓ ∗Wℓ is a circuit in H containing all the edges in H, which contains
all the edges in G, and therefore G is Eulerian. ■

Corollary 10.94. Let G be a connected undirected graph with distinct vertices u and v. Then
G has an Eulerian u, v-trail if, and only if, u and v have odd degree, and all w ∈ V (G)− {u, v}
have even degree.

Proof. Suppose T is an Eulerian u, v-trail. Insert a new edge e with endpoints u and v into G.
Then T ∗ veu is an Eulerian circuit in G+ e, and by Theorem 10.93 the graph G+ e is even; that
is, dG+e(w) is even for all w ∈ V (G+ e) = V (G). Now, dG(w) = dG+e(w) for w ∈ V (G)−{u, v},
and dG(w) = dG+e(w)− 1 for w ∈ {u, v}, and therefore all w ∈ V (G)− {u, v} have even degree
while u and v have odd degree.

For the converse, suppose u and v have odd degree, and all w ∈ V (G)− {u, v} have even
degree. Again insert a new edge e into G that joins u and v in a new graph G + e. Now,
G + e is a connected graph whose vertices all have even degree, so by Theorem 10.93 there
is an Eulerian circuit C in G + e. If we designate u to be the starting vertex of C, then
C = ue1v1 · · · en−1vn−1enu for some n ≥ 2. For some 1 ≤ k ≤ n we have ek = e, and thus
vk−1ekvk is either veu or uev. By reversing the direction of travel along C if necessary, we can
ensure that vk−1ekvk = veu, and so in particular vk−1 = v and vk = u. Deleting e from C leaves
us with trails T1 = ue1v1 . . . ek−1v and T2 = uek+1vk+1 · · · enu in G, so that T2 ∗ T1 is a u, v-trail
in G that contains all the edges in G, and therefore G has an Eulerian u, v-trail. ■

Example 10.95. The origin of graph theory is by a broad consensus traced to a famous problem
solved by the Swiss mathematician Leonhard Euler (pronounced OI-ler) in 1736. The town of
Königsberg (now Kaliningrad), located in the Kingdom of Prussia, straddled the Pregel river
and also included a couple of islands in the middle of the river. There were seven bridges that
enabled the townsfolk to reach the islands and cross the river, as illustrated at left in Figure 17.
Strolling across all seven bridges was a favorite pastime on Sundays, and the question arose
whether it was possible to cross all seven bridges precisely once and return to the same place one
started. Frederick the Great brought the problem to the attention of Euler, and Euler produced
a proof that such an excursion is impossible.

To analyze the problem, the bridges can be represented by edges in a graph having four
vertices: u and v to represent each island, and w and x to represent each bank of the river.
What results is a multigraph like that shown at right in Figure 17. To ask whether it’s possible
to set off from any point in the town, cross all seven bridges precisely once, and return to the
same point, is to ask whether the multigraph is Eulerian. And the answer is no, since the
vertices in the graph do not all have even degree. Indeed, none of the vertices have even degree,
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Figure 17. At left: the seven bridges of Königsberg; at right: a graph representation.

but Theorem 10.93 makes clear that it only takes one vertex with odd degree to ensure a graph
is not Eulerian.

In fact, it is still not possible to cross all seven bridges precisely once even if we allow for an
excursion that ends at a different point than where it began, such as starting at vertex u and
ending at vertex v. For such an Eulerian u, v-trail to exist, Corollary 10.94 informs us that, in
addition to u and v having odd degree (which is the case here), it is necessary for the other
vertices w and x to have even degree (which is not the case). At least one bridge will need to
be crossed twice, or not at all. ■

To date there is no known set of necessary and sufficient conditions for a graph G to be
Hamiltonian; and so, while according to Theorem 10.93 a connected graph is Eulerian if and
only if it is even, there is no theorem that states that a graph is Hamiltonian if and only if
it satisfies one or more stated properties. Certainly any cycle Cn or complete graph Kn is
Hamiltonian, but these are special classes of graphs. There are, however, theorems that give
sufficient conditions for a graph to be Hamiltonian. One such theorem, established in 1960, is
the following.

Theorem 10.96 (Ore’s Theorem). Let G be a simple undirected graph. If |V (G)| ≥ 3 and
dG(u) + dG(v) ≥ |V (G)| for all u, v ∈ V (G) such that {u, v} /∈ E(G), then G is Hamiltonian.

Proof. Suppose that G is not Hamiltonian. Let n = |V (G)|, and assign some order to the n
vertices of G. Now we join the first vertex to as many other vertices in G as possible without
introducing loops or parallel edges, or obtaining a Hamiltonian graph. We then perform the
same operation on the second vertex, the third, and so on until the nth vertex is operated
on. What results is a new simple graph H with V (H) = V (G) and E(H) ⊇ E(G) that is so
constructed that the addition of a single new edge to H that is neither a loop nor parallel to an
existing edge will result in a simple graph that is Hamiltonian. (That enough edges may be
added to G to obtain a Hamiltonian graph is clear from the fact that the complete graph on n
vertices, Kn, is Hamiltonian.) Let e be such an edge, so that H + e is Hamiltonian and thus has
a Hamiltonian cycle C = u1e1 · · ·unenu1. That C traverses e is evident from the fact that, if it
did not, then deleting e would leave C intact as a Hamiltonian cycle in H, which is impossible.
Hence e = ek for some 1 ≤ k ≤ n, and deleting e results in one of three outcomes in H: two
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paths P1 = u1 · · ·uk−1uk and P2 = uk+1 · · ·unu1 (if 2 ≤ k ≤ n− 1), or a path P3 = u2 · · ·unu1
(if k = 1), or a path P4 = u1u2 · · ·un (if k = n). Certainly P4 and P3 are Hamiltonian paths
in H, while in the case when 2 ≤ k ≤ n − 1 we find P2 ∗ P1 to be a Hamiltonian path in H.
Therefore H has a Hamiltonian path P , which with a relabeling of the vertices we may write
as P = v1v2 · · · vn. That H has no Hamiltonian cycle implies v1 and vn are not adjacent in H,
hence not adjacent in G, and so

dH(v1) + dH(vn) ≥ dG(v1) + dG(vn) ≥ n,

whence dH(vn) ≥ |V (G)| − dH(v1), and therefore vn is not adjacent to at most dH(v1) vertices
in H.

Next we define a set S consisting of all vertices vi ∈ V (H) = {v1, . . . , vn} such that vi+1 is
adjacent to v1 in H:

S =
{
vi ∈ V (H) : {v1, vi+1} ∈ E(H)

}
.

Clearly vn /∈ S, and since v1 is not adjacent to itself or vn, there is a one-to-one correspondence
between the elements of S and the vertices adjacent to v1 in H, so that |S| = dH(v1). Now,
if vn were not adjacent to any v ∈ S, then because vn /∈ S and vn is not adjacent to itself, it
would follow that vn is not adjacent to dH(v1) + 1 vertices, thereby contradicting our earlier
finding that vn is not adjacent to at most dH(v1) vertices. Hence S contains some vℓ such that
{vℓ, vn} ∈ E(H), where {v1, vℓ+1} ∈ E(H) by the definition of S. With these two edges and the
Hamiltonian path P , we may now construct a Hamiltonian cycle

C = v1v2 · · · vℓvnvn−1 · · · vℓ+1v1,

in contradiction to H being non-Hamiltonian. Therefore G must be Hamiltonian. ■

Ore’s theorem is an improvement on another theorem, now called Dirac’s theorem, that was
estalished in 1952. Dirac’s theorem is an immediate corollary to Ore’s theorem.

Theorem 10.97 (Dirac’s Theorem). Let G be a simple undirected graph. If |V (G)| ≥ 3 and
dG(v) ≥ 1

2
|V (G)| for all v ∈ V (G), then G is Hamiltonian.

Proof. Suppose |V (G)| ≥ 3 and dG(v) ≥ 1
2
|V (G)| for all v ∈ V (G). Then for any nonadjacent

u, v ∈ V (G) we have dG(u) + dG(v) ≥ 1
2
|V (G)| + 1

2
|V (G)| = |V (G)|, and therefore G is

Hamiltonian by Ore’s theorem. ■

Proposition 10.98. For all n ≥ 3, Kn is Hamiltonian.

Proof. Let n ≥ 3, and fix v ∈ V (Kn). Then d(v) = n− 1 since v is joined to each of the other
n− 1 vertices in the graph by a single edge. Now,

d(v) ≥ 1

2
|V (Kn)| ⇔ n− 1 ≥ n

2
⇔ n ≥ 2,

and since n ≥ 2 is true, so too is d(v) ≥ 1
2
|V (Kn)|. Therefore Kn is Hamiltonian by Dirac’s

theorem. ■
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10.8 – Weighted Graphs and Shortest Paths

The definition for the length of a walk in a graph G, given in §10.2, indicates that for
any vertices u, v ∈ V (G), the length of a u, v-path in G equals the number of edges that are
traversed by the path, which equals the number of edges in the path’s vertex-edge sequence.
This definition effectively sets the length of any edge e ∈ E(G) to be equal to 1. However, for
many applications it makes sense to give each edge in a graph its own designated length, or
“weight,” which gives rise to what’s called a weighted graph.

Definition 10.99. A weighted graph is a graph G in which each edge e has an associated
number, called the weight of e. The weight of a walk in G is the sum of the weights of the
edges traversed by the walk, counting repetitions.

Formally a weighted graph G may be characterized as an ordered quadruple G = (V,E, ι, ω),
where as usual ι is the graph’s incidence function, and ω : E → R is an edge-weight function
that for each edge e ∈ E returns an associated weight ω(e) that is some real number.9 The
weight of an edge or path is also called the length of the edge or path, and thus it is natural
to define the distance between vertices u, v ∈ V , denoted by dω(u, v), to be the length of the
shortest u, v-path in G. If no u, v-path exists in G, then the distance is “infinite” and we write
dω(u, v) = ∞. Thus dω(u, v) will be real-valued for all u, v ∈ V in a connected weighted graph.
The length (or weight) of a trivial path is defined to be 0, as in an unweighted graph. Finally, if
W is a walk with vertex-edge sequence v0e1v1 · · · envn, then ω(W ) denotes the weight of W , so
that

ω(W ) = ω(v0e1v1 · · · envn) =
n∑

k=1

ω(ek).

Example 10.100. In Figure 18 is a drawing of a weighted simple graph G, with the weight of
each edge displayed at approximately the midpoint of the edge. The weight of edge ad is 2, for
instance. If ω is the edge-weight function for G, then ω(ad) = 2, ω(de) = 1, ω(ez) = 13, and so
on. The weight of the path with vertex sequence adez is

ω(ad) + ω(de) + ω(ez) = 2 + 1 + 13 = 16.

9We use the Greek letter ω here for its resemblance to the letter w, for “weight,” thereby leaving w free to
denote a vertex.
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This is not the shortest a, z-path in G, however. The path abcz has length 7 + 6 + 2 = 15,
which is seen to be the shortest path by inspection, and thus the distance between a and z is
dω(a, z) = 15. ■

In Example 10.100 we found the length of the shortest path from a to z in the graph depicted
in Figure 18 by inspection (or what might be called “brute force”). In the next example we
shall approach the problem of finding the distance between a and z methodically, using an
approach known as Dijkstra’s algorithm. The treatment will be heuristic to start, favoring
verbal descriptions over the use of symbols or code.

Example 10.101. Let G be the graph in Figure 18. To find the distance (i.e. the length of
the shortest path) between vertices a and z, we apply a method that we might use if we knew
the lengths of only those edges that are incident to vertices that we have visited via some path.
The first vertex we visit is a.

We first find the closest vertex to a. This is done by examining all paths that can be
constructed by the following procedure: For x ∈ {a} find the shortest a, x-path, then concatenate
this a, x-path with an edge uv for which u ∈ {a} and v /∈ {a}. Letting x = a (our only choice),
the shortest a, a-path is the trivial path with vertex sequence a, so that u = a since edge uv
must be incident to a, and then v may be either b or d. If v = b, the path ab of length 7 results;
and if v = d, the path ad of length 2 results. Therefore d is the closest vertex to a, and the
shortest a, d-path is ad with dω(a, d) = 2.

We next find the second closest vertex to a. This is done by examining all paths that can
be constructed as follows: For x ∈ {a, d} find the shortest a, x-path, then concatenate this
a, x-path with an edge uv for which u ∈ {a, d} and v /∈ {a, d}. Letting x = a yields the path ab
of length 7. Letting x = d, the shortest a, d-path is ad, and then uv = de so that the path ade
of length 3 results. Therefore e is the second closest vertex to a, and the shortest a, e-path is
ade with dω(a, e) = 3.

Now to find the third closest vertex to a. We do this by examining all paths that can
be constructed as follows: For x ∈ {a, d, e} find the shortest a, x-path, then concatenate this
a, x-path with an edge uv for which u ∈ {a, d, e} and v /∈ {a, d, e}. Letting x = a yields path ab
(length 7); letting x = d yields no path; and letting x = e yields paths adeb (length 13) and
adez (length 16). Therefore b is the third closest vertex to a, and the shortest a, b-path is ab
with dω(a, b) = 7.

Next we find the fourth closest vertex to a. We do this by examining all paths that can
be constructed as follows: For x ∈ {a, d, e, b} find the shortest a, x-path, then concatenate
this a, x-path with an edge uv for which u ∈ {a, d, e, b} and v /∈ {a, d, e, b}. Letting x = a or
x = d yields no path; letting x = e yields path adez (length 16); letting x = b yields path abc
(length 13). Therefore c is the fourth closest vertex to a, and the shortest a, c-path is abc with
dω(a, c) = 13.

Finally we find the fifth closest vertex to a. We do this by examining all paths that can be
constructed as follows: For x ∈ {a, d, e, b, c} find the shortest a, x-path, then concatenate this
a, x-path with an edge uv for which u ∈ {a, d, e, b, c} and v /∈ {a, d, e, b, c} (so v = z). Letting
x be a, d, or b yields no path; letting x = e yields path adez (length 16); letting x = c yields
path abcz (length 15). Therefore z is the fifth closest vertex to a (as we could have guessed by
a process of elimination), and the shortest a, z-path is abcz with dω(a, z) = 15. ■
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Algorithm Dijkstra Dijkstra’s Algorithm

Input: G [weighted connected simple graph with ω > 0 and vertices a = v0, v1, . . . , vn = z]
1: for i := 1 to n do
2: ℓ(vi) := ∞
3: end for
4: ℓ(a) := 0
5: S := ∅
6: while z /∈ S do ▷ V (G)− S ̸= ∅ instead of z /∈ S makes all
7: u := v /∈ S with ℓ(v) is minimal ▷■ v ̸= a targets.
8: S := S ∪ {u}
9: for all v /∈ S do
10: if ℓ(u) + ω(uv) < ℓ(v) then
11: ℓ(v) := ℓ(u) + ω(uv)
12: end if
13: end for
14: end while
Output: ℓ(z)

When applying Dijkstra’s algorithm to find the length of the shortest path between vertices
a and z in a weighted graph G, we call a the source vertex and z the target vertex. It’s
noteworthy that the algorithm not only finds the distance from a source to a target, but also the
distances between the source and every vertex that is closer to the source than the target. In
Example 10.101, distances dω(av) were found for all v ∈ V (G) because the target z happened
to be farther from a than all other vertices in G. In general one could execute the algorithm
without a specific target in mind, specifying only a source a, until the distances from a to
all over vertices in a weighted graph are found. One thing Dijkstra’s algorithm does require,
however, is that all edge weights be positive real numbers. Given any weighted graph G with
edge-weight function ω, we write ω > 0 to indicate that ω : E(G) → (0,∞); that is, ω(e) > 0
for all e ∈ E(G).

The pseudocode for Dijkstra’s algorithm is given by Algorithm Dijkstra, with source vertex
being a and target vertex being z. It begins by assigning a label ℓ(v) to every vertex v ∈ V (G)
that is also called the tentative distance between a and v. Before the first iteration of the
while loop the label ℓ(v) is the length of the shortest path from a to v consisting only of vertices
in the set S together with v itself. However, S is empty to start, so no such a, v-path exists
unless v = a, and hence ℓ(v) = ∞ if v ̸= a, and ℓ(a) = 0. Once this is done, the while loop is
executed.

Let Sk be the set S in the algorithm during the kth iteration of the while loop, and let
ℓk(v) be the label assigned to v during the kth iteration of the while loop. Then S0 = ∅,
and since ℓ0(a) = 0 is minimal, the first iteration of the while loop starts by designating
S1 = S0 ∪ {a} = {a}, followed by a for loop assigns new labels to all vertices except a. Since
z ̸= a, the while loop then repeats, adding a vertex u with minimal label ℓ1(u) to S1 to form
S2 = {a, u}, after which the for loop again assigns updated labels.

After the (k − 1)st iteration of the while loop, there will be a vertex u /∈ Sk−1 with ℓk−1(u)
minimal, and so the kth iteration will commence by defining Sk = Sk−1 ∪ {u}. (If two or more



68

vertices have the same minimal label value, the algorithm will choose only one of the vertices to
be in Sk, and leave the others out.) The for loop nested within the while loop is then executed,
comparing ℓ(u) + ω(uv) with ℓ(v) to determine whether ℓ(u) + ω(uv) < ℓ(v) is true or false. If
uv /∈ E(G), then ω(uv) is undefined and so ℓ(u) +ω(uv) < ℓ(v) is judged to be false. In keeping
with our use of the symbol ∞ thus far, we will set ω(uv) = ∞ if u and v are not adjacent in G.
The operating rules for ∞ are: ∞+ x = x+∞ = ∞ for all x ∈ R ∪ {∞}, and x < ∞ for all
x ∈ R. In particular we consider ∞ <∞ to be false.

Suppose v /∈ Sk. Then, in the course of the kth iteration of the while loop, the for loop will
update the label assigned to v. The if-then statement in the for loop ensures that

ℓk(v) = min{ℓk−1(v), ℓk−1(u) + ω(uv)},

where again u is the vertex for which ℓk−1(u) is minimal among all labels ℓk−1(w) for w /∈ Sk−1.
We will see in the proof of Theorem 10.102 that ℓk(v) is in fact the length of the shortest path
from a to v containing only vertices in Sk (except for v).

If V (G) = {v0, v1, . . . , vn} with a = v0 and z = vn, as in Algorithm Dijkstra, then the while
loop must repeat at most n+ 1 times before the algorithm terminates and returns the length of
the shortest possible a, z-path, since after the (n+ 1)st iteration all n+ 1 vertices of the graph
will be in the set S. Of course, it’s more likely that z will be added to the set S earlier than
this, in which case the algorithm will terminate when some vertices are still not in S.

To have the algorithm find the length of the shortest a, v-path for all v ∈ V (G), one need
only replace the condition z /∈ S in the first line of the while block with something like S ̸= V (G)
or S − V (G) ̸= ∅, and then have the algorithm output the final labels of all vertices. This
effectively makes all vertices of the graph targets, and not just the vertex z.

Theorem 10.102. Dijkstra’s algorithm finds the length of the shortest path between a source
vertex a and target vertex z in a connected simple undirected weighted graph.

Proof. For k ≥ 0 let ℓk and Sk be defined as before. Define the predicates

P1(k) : “For all v ∈ Sk, ℓk(v) is the length of the shortest a, v-path.”

P2(k) : “For all v /∈ Sk, ℓk(v) is the length of the shortest a, v-path
for which all vertices but v are in Sk.”

Also let P (k) be the predicate “After the kth iteration of the while loop in Dijkstra’s algorithm,
P1(k) and P2(k) are true.” To prove the theorem, we first prove by induction that P (k) is true
for all k ≥ 0.10

When k = 0, so that the while loop has not yet been executed even once, we have S0 = ∅,
and so P1(0) is vacuously true. The initial labels ℓ0(a) = 0 and ℓ0(v) = ∞ for v ̸= a, meanwhile,
show P2(0) to also be true. Hence P (0) is true, and therefore the basis case is true.

For the inductive step, suppose P (k) is true for some k ≥ 0. We will first show that P1(k+1)
is true. By P1(k), each v ∈ Sk has label ℓk(v) which is the length of the shortest possible
a, v-path, and since the algorithm does not update the label of any v ∈ Sk, it is established
that every v ∈ Sk+1 likewise has a label that equals the length of the shortest a, v-path with

10Certainly the theorem could proved if just P1(k) alone is shown to be true for all k ≥ 0, but this is more
easily accomplished by incorporating P2(k) into the inductive hypothesis.
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the exception of the vertex u with minimal label ℓk(u) that is added to the set S to form the
set Sk+1. Since u ∈ Sk+1, the label ℓk(u) is not updated during the (k + 1)st iteration, and so
it remains to show that ℓk(u) is the length of the shortest a, u-path. By way of contradiction
suppose it is not, so that there exists an a, u-path Pau of length less than ℓk(u). Since u /∈ Sk,
P2(k) implies that ℓk(u) is the length of the shortest a, u-path having all vertices but u in Sk,
so that Pau must contain at least one vertex w ≠ u such that w /∈ Sk, and we will assume w
is the first such vertex in the vertex sequence for Pau. The a, w-path Paw that is a subpath of
Pau is certainly shorter than Pau, and except for w, Paw contains only vertices in Sk. Since by
P2(k) the label ℓk(w) is the length of the shortest a, w-path having all vertices but w in Sk, it
follows that ℓk(w) is less than or equal to the length of Paw, and hence ℓk(w) < ℓk(u). But this
contradicts the hypothesis that ℓk(u) is minimal. Therefore ℓk(u) = dω(au), and P1(k + 1) is
true.

We now prove P2(k+1). Let v /∈ Sk+1, and let u be as before (that is, u /∈ Sk and u ∈ Sk+1).
Denote by Pav the shortest a, v-path with all vertices but v in Sk+1. To show is that the length
of Pav equals ℓk+1(v). We first consider the case in which u is not a vertex in Pav. Then Pav is a
shortest a, v-path with all vertices but v in Sk. On the other hand, P2(k) implies that ℓk(v) is
the length of the shortest a, v-path with all vertices but v in Sk, and so the length of Pav equals
ℓk(v). Now, suppose ℓk+1(v) < ℓk(v). This indicates that the algorithm updated ℓ(v) during the
(k + 1)st iteration, with ℓk+1(v) := ℓk(u) + ω(uv), and so ℓk(u) + ω(uv) < ℓk(v). Now, by P2(k),
ℓk(u) is the length of a shortest a, u-path with vertex sequence Pau having all vertices but u in
Sk, and thus Pau ∗ uv is an a, v-path having all vertices but v in Sk+1. The length of Pau ∗ uv is
ℓk(u) + ω(uv), which is less than the length of Pav. As this is impossible, and ℓk+1(v) > ℓk(v) is
also impossible (labels never increase in value), we conclude that ℓk+1(v) = ℓk(v), and therefore
ℓk+1(v) equals the length of Pav.

We finally turn to the case wherein the shortest path from a to v with all vertices but v in
Sk+1 must pass through u. Again ℓk(v) is the length of the shortest a, v-path with all vertices
but v in Sk, which we denote by P ′

av. Since u /∈ Sk, the path P ′
av does not pass through u, and

so P ′
av must be longer than the concatenation of the shortest a, u-path with all vertices but u

in Sk with the path uv, which has length ℓk(u) + ω(uv). Thus ℓk(u) + ω(uv) < ℓk(v), and so
Dijkstra’s algorithm defines ℓk+1(v) = ℓk(u) + ω(uv). Since ℓk(u) is the length of the shortest
a, u-path with all vertices but u in Sk, it follows that ℓk(u) + ω(uv) is the length of the shortest
a, v-path with all vertices but v in Sk+1. We conclude once more that ℓk+1(v) equals the length
of Pav, showing that P2(k + 1) is true, and therefore P (k + 1) is true.

Finally, Algorithm Dijkstra terminates after the completion of some iteration of the while
loop in which z is included in S and a final updating of labels is done, returning as output the
label ℓ(z). Assuming this occurs during the kth iteration, it follows by P1(k) that the output
ℓ(z) is the length of the shortest a, z-path in G. ■

Theorem 10.103. For a graph with n vertices, the time complexity of Dijkstra’s algorithm is
at most O(n2).

Proof. Suppose a graph G has n vertices. At worst the target vertex z is added to S last, and
since each iteration of the while loop adds one vertex to S, starting with the empty set, the
while loop will need to be iterated no more than n times. Now, for each iteration, at worst
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Figure 19. At left: the weighted graph G; at right: the shortest a, z-path in G.

n − 1 comparisons must be done to find a vertex with a minimal label,11 whereafter the for
loop will at worst perform n− 1 additions and n− 1 comparisons. Thus each of the at most
n iterations of the while loop will perform at most 3(n− 1) operations, for a total of at most
3n(n− 1) operations. Finally, let T (n) denote the time necessary for the algorithm to complete
its task when given a graph with n vertices. Assuming each operation (whether an addition or
a comparison) takes time c to execute, we have T (n) ≤ 3cn(n− 1) < 3cn2 for all n ≥ 2, and
therefore T (n) is at most O(n2). ■

Example 10.104. Here we shall use Dijkstra’s algorithm, as presented by the pseudocode of
Algorithm Dijkstra, to find the length of the shortest a, z-path in the weighted graph G with
edge-weight function ω and V (G) = {a, b, c, d, e, z} depicted in Figure 19. The procedure begins
by declaring ℓ0(a) := 0, ℓ0(v) := ∞ for all v ̸= a, and S0 := ∅.

1st iteration of the while loop: We have a /∈ S0 with ℓ0(a) minimal, so S1 := S0 ∪ {a} = {a},
whereafter the for loop is executed:

ℓ0(a) + ω(ab) = 4 <∞ = ℓ0(b) ↪−→ ℓ1(b) := 4.

ℓ0(a) + ω(ac) = 2 <∞ = ℓ0(c) ↪−→ ℓ1(c) := 2.

ℓ0(a) + ω(av) = ∞ ≮ ∞ = ℓ0(v) ↪−→ ℓ1(v) := ∞ for v = d, e, z.

2nd iteration: ℓ1(c) = 2 is minimal, so S2 = S1 ∪ {c} = {a, c}. For those vertices not in S2 we
have:

ℓ1(c) + ω(cb) = 3 < 4 = ℓ1(b) ↪−→ ℓ2(b) := 3.

ℓ1(c) + ω(cd) = 10 <∞ = ℓ1(d) ↪−→ ℓ2(d) := 10.

ℓ1(c) + ω(ce) = 12 <∞ = ℓ1(e) ↪−→ ℓ2(e) := 12.

ℓ1(c) + ω(cz) = ∞ ≮ ∞ = ℓ1(z) ↪−→ ℓ2(z) := ∞.

3rd iteration: ℓ2(b) = 3 is minimal, so S3 = S2 ∪ {b} = {a, b, c}. For those vertices not in S3 we
have:

ℓ2(b) + ω(bd) = 8 < 10 = ℓ2(d) ↪−→ ℓ3(d) := 8.

11This assumes vertex labels are examined one by one, though there are sorting algorithms that can do the
task more efficiently.
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k ℓk(a) ℓk(b) ℓk(c) ℓk(d) ℓk(e) ℓk(z)

0 0 ∞ ∞ ∞ ∞ ∞
1 0 4 2 ∞ ∞ ∞
2 0 3 2 10 12 ∞
3 0 3 2 8 12 ∞
4 0 3 2 8 10 14

5 0 3 2 8 10 13

Figure 20. Vertex labels after the kth iteration of the while loop.

ℓ2(b) + ω(be) = ∞ ≮ 12 = ℓ2(e) ↪−→ ℓ3(e) := 12.

ℓ2(b) + ω(bz) = ∞ ≮ ∞ = ℓ2(z) ↪−→ ℓ3(z) := ∞.

4th iteration: ℓ3(d) = 8 is minimal, so S4 = S3 ∪ {d} = {a, b, c, d}. For those vertices not in S4

we have:

ℓ3(d) + ω(de) = 10 < 12 = ℓ3(e) ↪−→ ℓ4(e) := 10.

ℓ3(d) + ω(dz) = 14 <∞ = ℓ3(z) ↪−→ ℓ4(z) := 14.

5th iteration: ℓ4(e) = 10 is minimal, so S5 = S4 ∪ {e} = {a, b, c, d, e}. For z /∈ S4 we have:

ℓ4(e) + ω(ez) = 10 + 3 = 13 < 14 = ℓ4(z) ↪−→ ℓ5(z) := 13.

As with Example 10.101, it so happens that the target z is the last vertex to be included in
the set S, and so the algorithm in fact finds the length of the shortest a, v-path, which is the
distance dω(a, v), for all v ∈ V (G). The results of each iteration are summarized in the table
in Figure 20. The bottom row of the table gives ℓ5(v) for each vertex v in the graph, where
ℓ5(v) = dω(a, v). ■

It has likely not escaped the notice of the reader that though Algorithm Dijkstra returns as
output the length of a shortest a, z-path, it does not specify any such path. While Dijkstra is
quite close in structure to the original algorithm conceived by Edsger Dijkstra in 1956, many
“modified” forms of the procedure have since been devised that do, in fact, furnish a compass
to trace shortest paths along their vertex sequences. Such a compass is sometimes called a
pointer, and we present Algorithm Dijkstra2 as an example of a shortest-path algorithm that
returns pointers as well as distances as outputs.

In addition to returning pointers, Dijkstra2 has a few other modifications relative to Dijkstra
that are made for purposes of demonstating the variety of ways that a computer program
dedicated to performing a particular task may be structured. First, the initialization phase
of Dijkstra2 places the source vertex v1 in the set S right away, before the first iteration of
the while loop. Second, the condition z /∈ S of the while loop in Dijkstra has been replaced
by V (G) − S ≠ ∅, which declares all vertices vi ̸= v1 to be targets, and not merely some
particular vertex z. Third and most importantly, there is the pointer output p(vi), which will
be an ordered pair of the form (dω(v1, vi), u); the first component in the pair will be the length
of a shortest v1, vi-path, and the second component will be the vertex u that precedes vi in the
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Algorithm Dijkstra2 Dijkstra’s Algorithm with Pointers

Input: G [weighted connected simple graph with ω > 0 and vertices v1, v2, . . . , vn]
1: ℓ(v1) := 0, S := {v1}, u := v1
2: for i := 2 to n do
3: ℓ(vi) := ∞
4: end for
5: while V (G)− S ̸= ∅ do
6: for i := 2 to n do
7: while vi ∈ V (G)− S and uvi ∈ E(G) do
8: if ℓ(u) + ω(uvi) < ℓ(vi) then
9: ℓ(vi) := ℓ(u) + ω(uvi) and p(vi) := (ℓ(vi), u)
10: end if
11: end while
12: end for
13: m := min{ℓ(vi) : vi ∈ V (G)− S}
14: for i := 2 to n do
15: while vi ∈ V (G)− S do
16: if ℓ(vi) = m then
17: S := S ∪ {vi}, u := vi, m := m− 1
18: end if
19: end while
20: end for
21: end while
22: for i := 2 to n do
23: Output p(vi)
24: end for

vertex sequence of a shortest v1, vi-path (so that u is the penultimate vertex in some sequence
v1 · · · vi).

Example 10.105. The weighted graph G at left in Figure 21 has V (G) = {v1, v2, . . . , v9} and
ω > 0. We use Algorithm Dijkstra2 to find, for each 2 ≤ i ≤ 9, the length of the shortest
possible v1, vi-path, and also a vertex ui that immediately precedes vi along such a path. The
mechanics of the routine are largely the same as in Example 10.104, but there are some important
differences. Here we shall run through the first iteration of the while loop that begins on line 5
of Dijkstra2, with the results for all eight iterations summarized in the table in Figure 22.

For the first iteration of the while loop, we find that the while loop beginning on line 7 is
executed only for i ∈ {2, 4, 5, 6}, since otherwise uvi = v1vi ∈ E(G) is false. Since u = v1, we
have:

ℓ0(v1) + ω(v1v2) = 17 <∞ = ℓ0(v2) ↪−→ ℓ1(v2) := 17, p(v2) := (17, v1),

ℓ0(v1) + ω(v1v4) = 11 <∞ = ℓ0(v4) ↪−→ ℓ1(v4) := 11, p(v4) := (11, v1),

ℓ0(v1) + ω(v1v5) = 32 <∞ = ℓ0(v5) ↪−→ ℓ1(v5) := 32, p(v5) := (32, v1),
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Figure 21. At left: the weighted graph G; at right: the shortest v1, v5-path in
G prescribed by Dijkstra2, and the shortest v1, v8-path.

ℓ0(v1) + ω(v1v6) = 20 <∞ = ℓ0(v6) ↪−→ ℓ1(v6) := 20, p(v6) := (20, v1),

and ℓ1(vi) = ℓ0(vi) = ∞ for i ∈ {3, 7, 8, 9}. Thus m := ℓ1(v4) = 11, so that S1 := S0 ∪ {v4} =
{v1, v4}, u := v4, and m := 11− 1 = 10. (This decrease in the value of m ensures that if there
is more than one vertex in the set {ℓ(vi) : vi ∈ V (G)− S} with label equal to m at line 13, then
it is only the vertex with the smallest index that is included in the set S at line 17.) The while
loop now repeats.

The bottom row of the table in Figure 22 is the only output the algorithm returns, in
accordance with the for loop on line 22 of Dijkstra2. Along this row, for each vi ∈ V (G)−{v1}, is
a pair of data: the first datum is dω(v1, vi), and the second datum is the vertex u that immediately
precedes vi on a v1, vi-path of length dω(v1, vi). For instance we have p(v8) = (38, v7), which
indicates that the shortest v1, v8-path has length 38, and v7 immediately precedes v8 along such
a path. To find what precedes v7 on this path, we note from the table that p(v7) = (32, v6),
and so the shortest v1, v7-path, which must necessarily be a subpath of the shortest v1, v8-path,
has v6 immediately preceding v7. What comes before v6 is v1, as indicated by p(v6) = (20, v1).
Therefore v1v6v7v8 is the vertex sequence of a shortest v1, v8-path. We find in the same way
that v1v4v5 is a shortest v1, v5-path, though it is noteworthy that v1v2v5 is another v1, v5-path
having the same length. The algorithm chose v1v4v5 because dω(v1, v4) < dω(v1, v2). This is a
hallmark of a so-called “greedy algorithm.” ■

We conclude this section with a whirlwind tour of the so-called traveling salesman
problem (abbreviated TSP). There is a salesman who must make a round trip that visits n
cities, including the city from which the salesman departs. For any two such cities that are
joined by a travel route, the length of the route is known. The problem asks: If the salesman is
to visit each of the n cities exactly once, then what is the minimum possible distance of such a
round trip?

One could just as easily substitute “cost” for “distance,” and ask what the minimum cost of
such a round trip will be. This would require knowledge of the cost of traveling between any
two cities for which there exists a means of travel. Or perhaps time is of the essence, and the
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k p(v2) p(v3) p(v4) p(v5) p(v6) p(v7) p(v8) p(v9)

0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
1 (17, v1) ∞ (11, v1) (32, v1) (20, v1) ∞ ∞ ∞
2 (17, v1) ∞ (11, v1) (30, v4) (20, v1) ∞ ∞ ∞
3 (17, v1) (38, v2) (11, v1) (30, v4) (20, v1) ∞ ∞ ∞
4 (17, v1) (38, v2) (11, v1) (30, v4) (20, v1) (32, v6) ∞ (42, v6)

5 (17, v1) (37, v5) (11, v1) (30, v4) (20, v1) (32, v6) (46, v5) (42, v6)

6 (17, v1) (37, v5) (11, v1) (30, v4) (20, v1) (32, v6) (38, v7) (40, v7)

7 (17, v1) (37, v5) (11, v1) (30, v4) (20, v1) (32, v6) (38, v7) (40, v7)

8 (17, v1) (37, v5) (11, v1) (30, v4) (20, v1) (32, v6) (38, v7) (40, v7)

Figure 22. Values of p(vi) = (ℓ(vi), u) for iteration 0 ≤ k ≤ 8 of the outer while
loop of Dijkstra2. We set p(vi) = ∞ if ℓ(vi) = ∞, and leave p(v1) undefined.

salesman wishes to minimize the time traveled during the round trip. In any case, it is assumed
it is possible to visit every city exactly once in the course of the round trip, which is to say the
graph G whose vertices represent the cities and whose edges represent travel routes between
cities must possess a Hamiltonian cycle. Indeed, G will be a weighted graph, with the weight of
each edge representing distance, cost, time, or some other quantity one might wish to minimize.
To solve the TSP, the most straightforward way is to identify all the possible Hamiltonian cycles
in G, calculate the weight of each, and identify the cycle with the minimum weight. We call
this method of solution the naive approach.

The naive approach to the TSP is simple enough to understand in principle, but as an
algorithm its time complexity is terrible. Suppose a simple undirected weighted graph G with n
vertices is complete, so that G ≃ Kn. Since Kn is Hamiltonian by Proposition 10.98, so too
is G, and thus we’re assured there exists at least one Hamiltonian cycle in G. Let c1 be the
starting vertex (and hence ending vertex) of a Hamiltonian cycle in G. Being complete, every
vertex in G is a neighbor of every other vertex, and so, starting at c1, we commence to count the
total number of Hamiltonian cycles in the graph. At c1 there are n− 1 choices for the second
vertex c2 in the cycle. At c2 there are n− 2 remaining choices for the third vertex c3, and at c3
there are n− 3 choices for the fourth vertex c4, and so on. Since there are n choices for the first
vertex c1, by the multiplication rule of counting there are n! Hamiltonian cycles with distinct
vertex sequences.

However, for purposes of the TSP it is immaterial what the starting vertex of the cycle is
chosen to be: If the cycle C with vertex sequence c1c2 · · · cnc1 has weight w, then the cycles
c2c3 · · · cnc1c2, c3c4 · · · cnc1c2c3, and so on to cnc1c2 · · · cn will all have weight w. This means
there is no need to designate a “home base” for the saleman’s round trip, since whatever the
minimum possible distance for a round trip commencing at one city is, it will be the same for a
round trip commencing at any other city on the itinerary. This leaves us with (n− 1)! possible
Hamiltonian cycles to consider, or what one might call equivalence classes of Hamiltonian cycles,
with the equivalence class for c1c2 · · · cnc1 defined to be

[c1c2 · · · cnc1] = {cici+1 · · · cnc1c2 · · · ci : 1 ≤ i ≤ n}.
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(This is to say that two cycles are equivalent if and only if the vertex sequence of one is a
circular permutation of the vertex sequence of the other.) As a further economy, we note that
once a round trip of minimal distance is found, the round trip along the same route but in
the opposite direction will have the same minimal distance. That is, cycles c1c2 · · · cnc1 and
c1cn · · · c2c1 must always have the same weight, and therefore the total number of Hamiltonian
cycles to consider is cut from (n− 1)! to (n− 1)!/2. Nevertheless, the numbers involved quickly
become enormous even for modest values of n. If n = 50, then (n− 1)!/2 ≈ 3.04× 1062. In this
case, if we calculated the weights of a quadrillion cycles per second since the time of the Big
Bang (currently thought to be about 13 billion years ago), then the fraction of the task that
would be completed by the present day would be less than 10−29.

For a graph G with |V (G)| = n, we see that the naive approach to the TSP has time
complexity of order O(n!), and there is no known algorithm that can solve the problem more
efficiently. To find an algorithm with polynomial time complexity (i.e. time complexity of order
O(nk) for some positive integer k) is a long-sought holy grail of theoretical computer science,
but it is not even known if such an algorithm exists. There are, however, algorithms that can
find approximate solutions to the TSP fairly fast; that is, they find Hamiltonian cycles having
weights “close” to the minimum.

Example 10.106. Solve the traveling salesman problem for the graph G in Figure 23.

Solution. We can let vertex a be the starting vertex of every Hamiltonian cycle. The full list
of such cycles is:

abcda, abdca, acbda, acdba, adbca, adcba.

However, half of these cycles pass through the vertices of G in the reverse order of the other
half: abcda and adcba, abdca and acdba, and acbda and adbca. Since reversing the direction of
travel along any given walk results in a new walk with the same weight as the old, we need only
find the weights of abcda, abdca, and acbda. We now find the weights of these three cycles:

ω(abcda) = 3 + 6 + 7 + 2 = 18,

ω(abdca) = 3 + 4 + 7 + 5 = 19,

ω(acbda) = 5 + 6 + 4 + 2 = 17.

We conclude that the the minimum weight of a Hamiltonian cycle in G is 17, and acbda is one
such cycle. ■
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The algorithms presented in this section are easily adapted to work for weighted simple
digraphs, but this will not be discussed here.
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11
Trees

11.1 – Properties of Trees

To begin our study of trees, recall that a graph having no subgraph that is a nontrivial cycle
is called acyclic. An acyclic graph cannot have loops (cycles of length 1) or parallel edges (cycles
of length 2), and so is necessarily a simple graph.

Definition 11.1. A tree is a connected acyclic graph. A forest is an acyclic graph, connected
or not. A vertex of degree 1 in a tree or forest is a leaf.

The contrapositive of Lemma 10.92 informs us that if a graph G is acyclic, then there exists
some v ∈ V (G) such that d(v) < 2. If G is connected as well, so that it is a tree, then it must
be that d(v) = 1 and hence vertex v is a leaf. In fact we can be sure that any tree having an
edge must possess at least two leaves.

Proposition 11.2. Any tree with at least one edge has at least two leaves.

Proof. Let T be a tree with at least one edge, and let P = v1v2 · · · vn be a path of maximum
length in T . We note that the length of P must be at least 1 since T has an edge, and thus
vn ̸= v1. Now, suppose v1 is not a leaf, so that d(v1) ≥ 2, and there is some vertex u ≠ v2
that is adjacent to v1. There are two possibilities: u /∈ V (P ) or u ∈ V (P ). If u /∈ V (P ), then
P ′ = uv1v2 · · · vn is a path in T of greater length than P—a contradiction. If u ∈ V (P ), then
u = vk for some 2 ≤ k ≤ n, and thus v1v2 · · · vkv1 is a cycle in T—again a contradiction. We
conclude that v1 must be a leaf, and by the same argument so too must vn. Therefore T has
two leaves. ■

Proposition 11.3. If T is a tree with |V (T )| = n, then |E(T )| = n− 1.

Proof. The proof will be by induction. Certainly if T is a tree with 1 vertex then there can be
no edges, which establishes the basis step. Suppose it is true that any tree with n vertices has
n − 1 edges, and let T be a tree with |V (T )| = n + 1. By Proposition 11.2 there is a vertex
v ∈ V (T ) that is a leaf. Then T − v is a tree with n vertices, and by our inductive hypothesis
|E(T − v)| = n − 1. Now, because v is a leaf, removing v from T also removes precisely one



78

edge from T , so that |E(T )| = |E(T − v)| + 1 = n. Having shown that any tree with n + 1
vertices has n edges, the proof is done. ■

Corollary 11.4. If G is a forest with n vertices and k components, then |E(G)| = n− k.

Proof. Suppose G is a forest with |V (G)| = n and k components. For each 1 ≤ i ≤ k let ni be
the number of vertices in component i. Since each component is a tree, by Proposition 11.3 the
ith component has ni − 1 edges. Therefore the total number of edges in G is

k∑
i=1

(ni − 1) =
k∑

i=1

ni − k = n− k,

as claimed. ■

Theorem 11.5. Let T be a simple graph with |V (T )| = n. The following statements are
equivalent.

1. T is a tree.
2. T is acyclic with |E(T )| = n− 1.
3. T is connected with |E(T )| = n− 1.
4. T is connected, and every edge is a cut-edge.
5. For every distinct u, v ∈ V (T ) there is exactly one u, v-path.
6. T is acyclic, and for any edge e /∈ E(T ) the graph T + e has exactly one cycle.

Proof.
(1) → (2). Suppose T is a tree. Then T is acyclic by definition, with |E(T )| = n − 1 by
Proposition 11.3.

(2) → (3). Suppose T is acyclic with |E(T )| = n− 1. Since T is a forest with n vertices, by
Corollary 11.15 we find T cannot have more than one component. Therefore T is connected.

(3) → (4). Suppose T is connected with |E(T )| = n − 1, and let e ∈ E(T ). We have
|V (T − e)| = n and |E(T − e)| = n− 2, and since |E(T − e)| < n− 1, Proposition 10.80 implies
that T − e is not connected, and therefore e is a cut-edge.

(4) → (5). Suppose T is connected. Suppose there exist distinct u, v ∈ V (T ) for which there is
not exactly one u, v-path. There is at least one such path by Proposition 10.72, and so there
must exist two different u, v-paths. A path being a trail, it follows by Theorem 10.34 that there
is a cycle in T . By Proposition 10.78 no edge in the cycle can be a cut-edge, and therefore not
every edge in T is a cut-edge.

(5) → (6). Suppose that for every distinct u, v ∈ V (T ) there is exactly one u, v-path. Assume
there is a cycle C in T . The length of C must be at least three since, being a simple graph, T
cannot have a loop or parallel edges. Thus for some n ≥ 3 there are distinct vertices v1, . . . , vn
such that C = v1v2 · · · vnv1, and we find that there are two distinct v1, v2-paths: v1v2 and
v1vnvn−1 · · · v2. This being a contradiction, we conclude that T is acyclic.

For vertices x, y ∈ V (T ) suppose that e = xy is not an edge in E(T ). If x = y, then e
is a loop at x and T + e has exactly one cycle, so we assume that x ≠ y. By hypothesis T
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has exactly one x, y-path P1 with vertex sequence xv1 · · · vky for some k ≥ 1, which does not
traverse edge e. The graph T + e has two x, y-paths: P1, and also the path with vertex sequence
xy, and hence T + e contains the cycle xv1 · · · vkyx. Suppose T + e contains more than one
cycle. These cycles must traverse e since T is acyclic, so that the differences between the cycles
can only involve edges in T . But then if e is deleted from the cycles the result will be two or
more distinct x, y-paths in T—a contradiction. Therefore T + e has exactly one cycle.

(6) → (1). Let T be acyclic, and suppose T is not a tree. Then T is disconnected, with
components H1 and H2. For u ∈ H1 and v ∈ H2, add the edge e = uv to T . Suppose T + e has
a cycle C. Then C must necessarily traverse e, so that it may be characterized as having vertex
sequence uvw1 · · ·wku. This cycle must pass from H1 to H2 via e, and then back to H1 via
some edge e′ ̸= e. But any such edge e′ would be a bridge connecting H1 and H2 in T , which is
a contradiction. We conclude that T + e is acylic; that is, there is an edge e /∈ E(T ) such that
T + e does not have exactly one cycle. ■

As the next theorem shows, the number of leaves in a tree T may be expressed in terms
of the number of vertices of T that are not leaves. For the theorem’s statement we define the
maximal degree of an undirected graph G, denoted by ∆(G), to be the largest degree attained
by the vertices of G; that is,

∆(G) = max{dG(v) : v ∈ V (G)}.

Theorem 11.6. Let T be a tree with |V (T )| ≥ 2, and define ni = |{v ∈ V (T ) : d(v) = i}| for
1 ≤ i ≤ ∆(T ). Then

n1 = 2 +

∆(T )∑
i=3

(i− 2)ni (11.1)

Proof. Let n = |V (T )|, so that |E(T )| = n− 1 by Proposition 11.3. Now by Theorem 10.21,

2(n− 1) = 2|E(T )| =
∑

v∈V (T )

d(v) =

∆(T )∑
i=1

ini,

and since n =
∑∆(T )

i=1 ni, it follows that

2

∆(T )∑
i=1

ni − 2 =

∆(T )∑
i=1

ini,

which then yields (11.1). ■

Example 11.7. A tree T has exactly 22 leaves, four vertices of degree 4, and three vertices of
degree 6. There are also exactly two vertices of degree ℓ. What is ℓ?

Solution. In the notation of Theorem 11.6 we are given that n1 = 22, n4 = 4, and n6 = 3.
Employing (11.1), we have

22 = 2 + n3 + 2(4) + 3n5 + 4(3) + 5n7 + · · ·+ (∆(T )− 2)n∆(T )
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whence comes
n3 + 3n5 + 5n7 + · · ·+ (∆(T )− 2)n∆(T ) = 0.

No term on the left side of this equation can be negatively valued, and so they must all equal 0.
Thus n3 = n5 = 0, and also nk = 0 for k ≥ 7, which implies that ∆(T ) = 6. The only possibility
left is for the two remaining vertices in T to each have degree 2, and therefore ℓ = 2. ■

Example 11.8. Show that no tree with 100 vertices can have vertices of only degree 1 and 5.

Solution. Suppose T is such a tree. Then ∆(T ) = 5 and, in the notation of Theorem 11.6,
ni = 0 for all i /∈ {1, 5}. Now,

n1 = 2 +
5∑

i=3

(i− 2)ni = 2 + 3n5,

and since n1 + n5 = 100, it follows that n1 = 2 + 3(100− n1) and hence n1 = 75.5. This being
impossible, there can exist no such tree as T . ■

Recalling that δ(G) denotes the minimum degree attained by the vertices of a graph G, the
following theorem furnishes a simple criterion that a simple graph may satisfy to ensure that
any tree with n vertices is isomorphic to a subgraph of that graph.

Theorem 11.9. Let T be a tree and G a simple graph. If |V (T )| = n ≥ 1 and δ(G) ≥ n− 1,
then T is isomorphic to a subgraph of G.

Proof. Suppose |V (T )| = 1 and δ(G) ≥ 0. Then T consists of a single vertex and G has at
least one vertex (otherwise δ(G) would be undefined), and so T is isomorphic to any subgraph
of G that has one vertex and no edges. The conditional statement (C) of the theorem is true
when n = 1.

Next suppose |V (T )| = 2 and δ(G) ≥ 1. Then T consists of precisely two vertices joined by
a single edge, and there exists some vertex u in G that is adjacent to at least one other vertex v
by a single edge e. Clearly T ≃ ({u, v}, {e}), and so (C) is true when n = 2.

Assume the conditional statement of the theorem is true for some n ≥ 2, and suppose
|V (T )| = n+ 1 and δ(G) ≥ n. Then T has at least one edge by Proposition 11.3, and so has a
leaf v by Proposition 11.2. Seeing as T − v is a tree with |V (T − v)| = n and δ(G) ≥ n − 1,
our inductive hypothesis implies that there is a subgraph H of G such that T − v ≃ H. Let
φ : V (T − v) → H be an isomorphism, and let u denote the sole vertex joined to v in T , so
that uv ∈ E(T ). We have u ∈ V (T − v), so that φ(u) ∈ V (H) ⊆ V (G) with dH(φ(u)) ≤ n− 1
(since |V (H)| = n) and dG(φ(u)) ≥ n. This implies there is some w ∈ V (G)− V (H) for which
φ(u)w ∈ E(G). Now (H ∪ {w}) + φ(u)w is a subgraph of G that is isomorphic to T . ■

Definition 11.10. Let G be a graph. The eccentricity of a vertex u ∈ V (G), denoted by ϵ(u)
or ϵG(u), is the distance from u to the vertex v ∈ V (G) that is farthest from u, and thus

ϵG(u) = max
v∈V (G)

dG(u, v).

A central vertex of G is a vertex with minimal eccentricity, with CG denoting the set of all
central vertices of G. The center of G, denoted by ZG, is the subgraph induced by CG.
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Lemma 11.11. Let T be a tree with |V (T )| ≥ 3.

1. If u is a leaf of T and w is its neighbor, then ϵ(u) = ϵ(w) + 1.
2. If u is a central vertex of T , then d(u) ≥ 2.

Proof.
Proof of (1). Suppose d(u) = 1 and w ∈ N(u). Let v ∈ V (T ) with v ̸= u,w be arbitrary. Any
u, v-path of minimal length must start by traversing edge uw, and so d(u, v) = d(w, v) + 1.
Moreover, d(u, v) ≥ 2 > 1 = d(u,w) > 0 = d(u, u), so that

max
v ̸=u,w

d(u, v) = max
v∈V (T )

d(u, v),

and hence

ϵ(u) = max
v∈V (T )

d(u, v) = max
v ̸=u,w

d(u, v) = max
v ̸=u,w

[d(w, v) + 1] = ϵ(w) + 1.

Proof of (2). Suppose d(u) < 2. Since T is connected it follows that d(u) = 1, and so u has a
neighbor w. Now, ϵ(u) > ϵ(w) by part (a), and therefore u is not a central vertex of T . ■

Lemma 11.12. Let T be a tree. If u,w ∈ V (T ) are such that ϵ(u) = d(u,w), then w is a leaf.

Proof. Fix u,w ∈ V (T ) and suppose w is not a leaf, so that d(w) ≥ 2. Let x and y be neighbors
of w. By Theorem 11.5 there is a unique u,w-path P , and it cannot pass through both x and y.
Indeed, if P did such a thing, then it would have a vertex sequence such as u · · · x · · · y · · ·w
(with the possibility that u = x if u ∈ N(w)), so that u · · ·xw would be another u,w-path
distinct from P—a contradiction. We henceforth assume that P passes through x but not y, so
that P = u · · ·xw and P has length d(u,w).

Now, we claim that there can exist no u, y-path that does not pass through w. To see this,
we observe that if such a path existed, then it would not be a unique u, y-path since P may
be extended to become the u, y-path u · · · xwy that does pass through w—again contradicting
Theorem 11.5. Hence the only possible u, y-path is the aforementioned extension of P to y, so
that d(u, y) = d(u,w) + 1, and then

ϵ(u) = max
v∈V (T )

d(u, v) ≥ d(u, y) > d(u,w).

Therefore ϵ(u) ̸= d(u,w). ■

Lemma 11.13. Let T be a tree with |V (T )| ≥ 3, let V ′ = {v ∈ V (T ) : d(v) = 1}, and let
T ′ = T − V ′.

1. T ′ is a tree.
2. If u ∈ V (T ′), then ϵT (u) = ϵT ′(u) + 1.

Proof.
Proof of (1). Since T is acyclic and T ′ is a subgraph of T , it follows that T ′ is acyclic. Also,
each v ∈ V ′ is certainly the endpoint of a cut-edge of T , but because d(v) = 1 we conclude that
v is not a cut-vertex of T by Proposition 10.79.

Proof of (2). Fix u ∈ V (T ′), so u is not a leaf of T . Let w be any vertex in T such that
ϵT (u) = dT (u,w). Then w is a leaf of T by Lemma 11.12. Let x be the neighbor of w, which
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cannot be a leaf since |V (T )| ≥ 3, and so x ∈ V (T ′). There is a unique path P in T from u to
w, which has length ϵT (u) and vertex sequence u · · ·xw. The unique u, x-path P ′ in T (which
also exists and is unique in the tree T ′) traces P up to x and so has length ϵT (u)− 1.

So, every w ∈ V (T ) with dT (u,w) = ϵT (u) is a leaf of T , and upon deleting these leaves to
obtain T ′ we find that every vertex x ∈ V (T ′) that is of maximal distance from u is such that
dT ′(u, x) = ϵT (u)− 1, and so ϵT ′(u) = ϵT (u)− 1. ■

The graph T ′ in Lemma 11.13 is an example of a subtree, which is any subgraph of a tree
that is itself a tree.

The lemmas above may be used to prove a useful fact: stripping the leaves from a tree T
having at least three vertices does not affect the center ZT of the tree.

Proposition 11.14. Let T be a tree with |V (T )| ≥ 3, and let V ′ = {v ∈ V (T ) : d(v) = 1}. If
T ′ = T − V ′, then CT ′ = CT .

Proof. Suppose T ′ = T − V ′. We begin by observing that if x ∈ V ′, then x is a leaf of T and
so cannot have minimal eccentricity by Lemma 11.11. Therefore, since V (T ) = V (T ′) ∪ V ′, we
have

min
v∈V (T ′)

ϵT (v) = min
v∈V (T )

ϵT (v).

Let u ∈ CT , so that ϵT (u) = min{ϵT (v) : v ∈ V (T )}. Then dT (u) ≥ 2 by Lemma 11.11,
which implies u /∈ V ′ and hence u ∈ V (T ′). Since ϵT ′(v) = ϵT (v)− 1 for all v ∈ V (T ′) by Lemma
11.13, we have

ϵT ′(u) = ϵT (u)− 1 = min
v∈V (T )

[ϵT (v)− 1] = min
v∈V (T ′)

[ϵT (v)− 1] = min
v∈V (T ′)

ϵT ′(v),

and therefore u ∈ CT ′ .
Next let u ∈ CT ′ . Then certainly u ∈ V (T ′), and by Lemma 11.13 we have

ϵT (u) = ϵT ′(u) + 1 = min
v∈V (T ′)

[ϵT ′(v) + 1] = min
v∈V (T ′)

ϵT (v) = min
v∈V (T )

ϵT (v),

and therefore u ∈ CT . ■

Corollary 11.15. If T is a tree with at least three vertices and T ′ is the subgraph obtained by
deleting the leaves of T , then ZT ′ = ZT .

Proof. By Proposition 11.14 the graphs ZT ′ and ZT each have vertex set CT , and moreover
each have edge set consisting of those edges in E(T ) whose endpoints both lie in CT . Indeed, the
only edges deleted in passing from T to T ′ are those incident with a leaf of T , and by Lemma
11.11 no leaf of T lies in CT . ■

Corollary 11.16. If T is a tree, then ZT has either a single vertex or a single edge.

Proof. We show using strong induction that, for all n ≥ 1, if T is a tree with |V (T )| = n,
then |V (ZT )| = 1 or |E(ZT )| = 1. The conditional statement P (n) is true in the case when
n = 1, since then ZT = T and so |V (ZT )| = |V (T )| = 1. Fix n ≥ 1, and suppose P (k) is true
for 1 ≤ k ≤ n. Suppose T to be a tree with |V (T )| = n + 1. If n = 1, then P (n + 1) follows
since T must consist of two vertices joined by a single edge, and hence ZT either consists of one
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vertex (so that |V (ZT )| = 1) or two vertices (so that |E(ZT )| = 1). We assume therefore that
n ≥ 2, which implies |V (T )| ≥ 3. Then |E(T )| ≥ 2 by Proposition 11.3, so that T has at least
two leaves by Proposition 11.2, and thus the subtree T ′ as defined in Proposition 11.14 has at
most n− 1 vertices. Now, since P (n− 1) is true by hypothesis, we have either |V (ZT ′)| = 1 or
|E(ZT ′)| = 1. However, ZT = ZT ′ by Corollary 11.15, so that we have either |V (ZT )| = 1 or
|E(ZT )| = 1, and therefore P (n+ 1) is true. ■
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11.2 – Rooted and Spanning Trees

When a tree sprouts from a consideration of some practical problem, there is often a vertex
r in the tree that is of particular interest. Typically it is desirable to know the distance from r
to each of the other vertices in the tree.

Definition 11.17. A vertex in a tree that is designated to be a point of reference for all other
vertices in the tree is called the tree’s root. A rooted tree is a tree that has a root r, in which
case we say the tree is rooted at r.

Being a graph, every tree has a drawing. Once a vertex r is chosen to be the root of a tree,
however, there are two prescribed ways in which the rooted tree is usually drawn. One way,
which we could call the “top-down” approach, places the root r at the top of the drawing, with
all vertices a distance 1 from r arranged in a row directly below r, all vertices a distance 2
from r in another row directly below the first one, and so on, so that all vertices a distance
k from r are placed in a row just below the one formed by the vertices a distance k − 1 from
r. The vertices a distance k from r are said to be at level k, with r itself being at level 0.
See Figure 24. The other common way of presenting a drawing of a rooted tree, the “left-right”
approach, amounts to a top-down drawing rotated counterclockwise by 90◦, so that the root r is
placed leftmost, level 1 is a column of vertices to the right of r, and so on.

Any vertex in a tree may be designated to be the tree’s root, thereby giving rise to a rooted
tree. It may be wondered what, in specific mathematical terms, distinguishes one rooted tree
with root r1 from another with root r2 if they both derive from the same tree T . Indeed, the
manner in which we have defined a rooted tree above would result in the two aforementioned
rooted trees being isomorphic! It must be admitted that our definition of a rooted tree is rather
informal, as we will have no need for the formal definition. The formal definition adds a bit
more structure: a rooted tree is a digraph whose underlying graph is a tree with a designated
root r, and every arc is directed toward whichever of its two endpoints is more distant from the
root. Thus if (u, v) is an arc in a rooted tree with root r, then d(r, v) = d(r, u) + 1. Hereafter
we shall make no more mention of this formal characterization of rooted trees.

As in a family tree there are some terms that are commonly used to describe certain
relationships between vertices in a rooted tree T with root r. Let u, v ∈ V (T ). If vertices u and
v are adjacent, with u belonging to level k and v to level k + 1, then v is called a child of u,

v1

r

v2

v3

v4

v5v6

v7

v8 v9

v1

r

v2 v3

v4 v5 v6

v7

v8 v9

level 0

level 1

level 2

level 3

level 4

Figure 24. A rooted tree T with root r, drawn at right in the “top-down” format.
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and u is the parent of v. Next, recalling from Theorem 11.5 that there is always precisely one
path between any two vertices in a tree, we say v is a descendant of u (and u an ancestor of
v) if u lies on the unique rv-path in T . Vertices having the same parent are siblings.
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12
Further Topics in Graph Theory

12.1 – Matchings

We turn define the notion of a matching in graph theory, and establish a few results concerning
it that involve bipartite graphs.

Definition 12.1. Let G = (V,E) be a simpled undirected graph. A matching in G is a set
M ⊆ E such that no two distinct edges in M have an endpoint in common. We say v ∈ V is
matched in M if it is an endpoint of some e ∈M , otherwise it is unmatched. If |N | ≤ |M |
for any matching N in G, then M is a maximal matching.

Put another way, if {u1, v1} and {u2, v2} are two distinct edges belonging to a matching M
in a simple undirected graph G, then the vertices u1, u2, v1, v2 are all distinct.

If G = (V,E) is a bipartite graph with bipartition (V1, V2), we say a matching M in G is a
complete matching from V1 to V2 if every v ∈ V1 is an endpoint of some e ∈M .

Proposition 12.2. Let G = (V,E) be a bipartite graph with bipartition (V1, V2). If M is a
complete matching from V1 to V2, then |M | = |V1|.

Proof. Suppose that M ⊆ E is a complete matching from V1 to V2. Since every vertex in V1
is an endpoint of some edge in M , it must be that |M | ≥ |V1|. Now, if |M | > |V1| were the
case, then there would be some edge e ∈M without an endpoint in V1. But this is impossible:
(V1, V2) being a bipartition, every edge in E (and hence in M) must have one endpoint in V1
and another in V2. Therefore |M | = |V1|. ■

Theorem 12.3 (Hall’s Marriage Theorem). If G = (V,E) is a bipartite graph with bipartition
(V1, V2), then G has a complete matching from V1 to V2 if and only if |NG(A)| ≥ |A| for all
A ⊆ V1.

Proof. Suppose G = (V,E) is a bipartite graph (bigraph) with bipartition (V1, V2), and G
has a complete matching M from V1 to V2. Let A ⊆ V1. If |A| = 0, so that A = ∅, then
|NG(A)| = 0 ≥ 0 = |A|. Assume |A| = n for some n ≥ 1, so that A = {a1, . . . , an} with ai ̸= aj
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whenever i ≠ j. Now, for each 1 ≤ i ≤ n there exists some bi ∈ V2 such that {ai, bi} ∈M , and
since bi ̸= bj whenever i ̸= j, we find that {b1, . . . , bn} ⊆ NG(A) and hence |NG(A)| ≥ n = |A|.

We prove the converse using strong induction on |V1|. Specifically we prove ∀n ≥ 1[P (n)],
where P (n) is the statement “If G = (V,E) is a bigraph with bipartition (V1, V2), |NG(A)| ≥ |A|
for all A ⊆ V1, and |V1| = n, then G has a complete matching from V1 to V2.”

Suppose G is a bigraph with bipartition (V1, V2), |NG(A)| ≥ |A| for all A ⊆ V1, and |V1| = 1.
Setting V1 = {u}, we have |NG(V1)| ≥ |V1| = 1, and so there exists some v ∈ V2 such that
{u, v} ∈ E. Letting M = {{u, v}}, it is clear that M is a complete matching for G from V1 to
V2, which proves P (1).

Fix n ≥ 1, and suppose P (i) for 1 ≤ i ≤ n. Thus the inductive hypothesis (IH) states
that if H = (W,F ) is a bigraph with bipartition (W1,W2), |NH(A)| ≥ |A| for all A ⊆ W1, and
|W1| = i ≤ n, then H has a complete matching from W1 to W2. Suppose that G = (V,E) is a
bigraph with bipartition (V1, V2), |NG(A)| ≥ |A| for all A ⊆ V1, and |V1| = n+ 1. To prove G
has a complete matching from V1 to V2 we consider two cases, the first case (C1) supposing that
|NG(A)| ≥ |A|+ 1 for any A ⊆ V1 with 1 ≤ |A| ≤ n. The second case (C2) will be the negation
of (C1).

Suppose (C1). Fix v ∈ V1. Since |NG({v})| ≥ |{v}| = 1, there exists some w ∈ V2 such that
{v, w} ∈ E. Define W = V − {v, w} and

F = {{x, y} ∈ E : {x, y} ∩ {v, w} = ∅}.

Then H = (W,F ) is the graph that results when the vertices v and w are deleted from G,
along with all edges incident to them. Also H is a bigraph with bipartition (W1,W2) =
(V1 − {v}, V2 − {w}), with |W1| = n.

Let B ⊆ W1. If B = ∅ then |NH(B)| ≥ |B| holds trivially, so assume that 1 ≤ |B| ≤ n.
Since B ⊆ V1, the (C1) hypothesis implies that |NG(B)| ≥ |B| + 1. Now, because v /∈ B,
the removal of v from G, and all edges incident to v, does not by itself reduce the number of
neighbors the vertices of B have; however, the removal of w from G may reduce the number
of vertices neighboring B by at most one. Thus NH(B) equals either NG(B) or NG(B)− {w},
so that |NH(B)| ≥ |B| in any case, and therefore |NH(A)| ≥ |A| for all A ⊆ W1. By (IH) the
graph H has a complete matching M from W1 to W2, and since no edge in M has v or w as an
endpoint, it follows that G has complete matching M ∪ {{v, w}} from V1 to V2. This proves
P (n+ 1) for case (C1).

Suppose (C2), so there exists some set W1 ⊆ V1 such that 1 ≤ |W1| ≤ n and |NG(W1)| <
|W1| + 1. Since |NG(W1)| ≥ |W1| as well, we have |NG(W1)| = |W1|. Let W2 = NG(W1),
W = W1∪W2, and F = {{v, w} ∈ E : v ∈ W1}. Then H = (W,F ) is a bigraph with bipartition
(W1,W2).

We now show that NH(A) = NG(A) for any A ⊆ W1. Let w ∈ NH(A), so there exists some
v ∈ A such that {v, w} ∈ F . Then {v, w} ∈ E since F ⊆ E, so that w ∈ NG(A) and hence
NH(A) ⊆ NG(A). Next let w ∈ NG(A), so {v, w} ∈ E for some v ∈ A. But then v ∈ W1

since A ⊆ W1, so that {v, w} ∈ F and thus w ∈ NH(A). It follows that NG(A) ⊆ NH(A), and
therefore NH(A) = NG(A). We use this fact to conclude that |NH(A)| = |NG(A)| ≥ |A| for all
A ⊆ W1, and hence (IH) implies that H has a complete matching M from W1 to W2.

Define W ′
1 = V1 −W1, W

′
2 = V2 −W2, W

′ = W ′
1 ∪W ′

2, and

F ′ = {{v, w} ∈ E : v ∈ W ′
1 ∧ w ∈ W ′

2},
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so that H ′ = (W ′, F ′) is a bigraph with bipartition (W ′
1,W

′
2), and |W ′

1| = |V1| − |W1| implies
that 1 ≤ |W ′

1| ≤ n. Suppose there is some A ⊆ W ′
1 such that |NH′(A)| < |A|. Now, since

A ∪W1 ⊆ V1 and A ∩W1 = ∅, we have

|NG(A ∪W1)| ≥ |A ∪W1| = |A|+ |W1|. (12.1)

On the other hand, any vertices in NG(A)−NH′(A) are in V2 −W ′
2 = W2 = NG(W1), so that

the number of neighbors of A ∪W1 in G is the number of neighbors of A in H ′ plus the number
of neighbors of W1 in G. Recalling that |NG(W1)| = |W1|, we obtain

|NG(A ∪W1)| = |NH′(A)|+ |NG(W1)| < |A|+ |W1|,

which contradicts (12.1). Therefore |NH′(A)| ≥ |A| for all A ⊆ W ′
1, and (IH) implies that H ′

has a complete matching M ′ from W ′
1 to W ′

2. Then G has M ∪M ′ as a complete matching from
V1 to V2, thereby proving P (n+ 1) for case (C2). ■

Hall’s marriage theorem has a variety of applications, the proof of the next theorem being
but one. For the statement of the theorem, given a bipartite graph G with bipartition (V1, V2),
the deficiency of any A ⊆ V1 is defined to be def(A) = |A| − |NG(A)|.

Theorem 12.4. If G = (V,E) is a bipartite graph with bipartition (V1, V2), then G has a
matching in which at least |V1| −maxA⊆V1 def(A) vertices of V1 are matched.

Proof. Suppose G = (V,E) is a bigraph with bipartition (V1, V2). Add d := maxA⊆V1 def(A)
new vertices to V2, and join each of the new vertices to all the vertices in V1. Letting D be the
set of new vertices and L = {{u, v} : u ∈ V1 ∧ v ∈ D} the set of new edges, we obtain a new
bigraph H = (V ∪D,E ∪ L) with bipartition (V1, V2 ∪D). Since |D| = d, for any B ⊆ V1 we
have

|NH(B)| = |NG(B)|+ |D| = |NG(B)|+max
A⊆V1

(
|A| − |NG(A)|

)
≥ |NG(B)|+

(
|B| − |NG(B)|

)
= |B|,

and so Hall’s marriage theorem implies that H has a complete matching M ′ from V1 to V2 ∪D.
Then M := M ′ − L is a matching in G, and since |M ′| = |V1| and M ′ has at most |D| edges
with endpoint in D, it follows that

|M | = |M ′ − L| ≥ |M ′| − |D| = |V1| −max
A⊆V1

def(A).

ThusM is a matching in G in which at least |V1|−maxA⊆V1 def(A) vertices of V1 are matched. ■

Example 12.5. There are four machines m1, m2, m3, m4, and each machine will be given one
of four tasks t1, t2, t3, t4. Machine m1 can do tasks t1, t3, t4; machine m2 can do tasks t2, t3;
machine m3 can do tasks t3, t4; and machine m4 can do tasks t1, t2. Is it possible to assign
tasks to the machines so that each machine is given exactly one task to do, and no task is left
undone? If so, then find such an assignment of tasks.
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m1

t1 t3 t4

m2

t2

m3 m4

Figure 25.

Solution. In Figure 25 is shown a bipartite graph G that illustrates what tasks each machine
can do, with mitj ∈ E(G) if and only if machine mi can do task tj. A bipartition (V1, V2) of
V (G) has V1 = {m1,m2,m3,m4} and V2 = {t1, t2, t3, t4}.

Let A ⊆ V1. If |A| = 1, so that A = {mi} for some 1 ≤ i ≤ 4. Every machine can do at least
two tasks, and so

|NG(A)| = |NG({mi})| ≥ 2 > 1 = |{mi}| = |A|.

If |A| = 2, then |NG(A)| ≥ 2 = |A|; and if |A| = 4, then A = V1 and NG(A) = V2, so that
|NG(A)| = |A| = 4. If |A| = 3 with m1 ∈ A, then |NG(A)| ≥ |NG({m3})| = 3 = |A|. Finally, if
|A| = 3 with m1 /∈ A, then A = {m2,m3,m4}, and by inspection we see that |NG(A)| = 4 > |A|.

Thus |NG(A)| ≥ |A|, and by Hall’s marriage theorem G has a complete matching from V1 to
V2. This means there is a matching M ⊆ E(G) such that each vertex in V1 is an endpoint of
some unique edge in M ; that is, for each mi ∈ V1, there exists a unique 1 ≤ j ≤ 4 such that
mitj ∈M . This means M designates a one-to-one correspondence between the elements of V1
and V2, so that each machine is given a single task to do, and no task is left undone.

One possible assignment of tasks is as follows: m1 does t3, m2 does t2, m3 does t4, and m4

does t1. ■

Example 12.6. In the distant future the clownfish and anemones in a particular reef have
decided to systematize their ancient symbiotic relationship. In a poll it is found that each
clownfish in the reef is willing to pair with any one of exactly 3 of the anemones in the reef, and
each anemone in the reef is willing to pair with any one of exactly 3 of the clownfish. Also, a
clownfish is willing to pair with an anemone if and only if the anemone is willing to pair with
the clownfish. Show that it is possible to match the clownfish and anemones in the reef so that
everyone is matched exclusively with someone with whom they are willing to be paired (as in a
marriage).

Solution. Let m be the number of clownfish in the reef, and n the number of anemones.
Naming the clownfish ui for 1 ≤ i ≤ m, and naming the anemones vj for 1 ≤ j ≤ n, and letting
V1 = {u1, . . . , um} and V2 = {v1, . . . , vn}, we form a bipartite graph G whose vertex set V (G)
has bipartition (V1, V2). We have uv ∈ E(G) if and only if u ∈ V1 is willing to pair with v ∈ V2.

Let A ⊆ V1 with |A| = p. In order to show that |NG(A)| ≥ |A|, we consider the smallest
value that |NG(B)| can attain for B ⊆ V1 such that |B| = p. To minimize |NG(B)|, we contrive
for the elements of B to have as many neighbors in common as possible. Each element of B has
3 neighbors, and so the total number of neighbors of B is minimized if B is constructed from a
disjoint union of sets, all of cardinality 3 except for possibly one set of cardinality less than 3, such
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that the elements belonging to a particular set all have the same neighbors. (It is not possible for
4 elements of B to have the same 3 neighbors, since that would mean there are 3 anemones that
are each willing to pair with 4 clownfish.) By the division algorithm, p = 3q+r for integers q ≥ 0
and 0 ≤ r ≤ 2. We have b1, b2, b3 ∈ B such that NG(b1) = NG(b2) = NG(b3), and b4, b5, b6 ∈ B
such that NG(b4) = NG(b5) = NG(b6), and so on until arriving at b3q−2, b3q−1, b3q ∈ B such that
NG(b3q−2) = NG(b3q−1) = NG(b3q). If r ̸= 0, then there are one or two elements of B left over
which also are taken to have the same set of neighbors, so that

NG(B) = NG(b3) ⊔NG(b6) ⊔ · · · ⊔NG(b3q) ⊔NG(b3q+r),

and hence

|NG(B)| =
q∑

i=1

|NG(b3i)|+ |NG(b3q+r)| =
q∑

i=1

3 + 3 = 3q + 3 > 3q + r = p.

It now follows that |NG(A)| ≥ |NG(B)| > p = |A|.
By Hall’s marriage theorem G has a complete matching from V1 to V2, so that every clownfish

is matched with an anemone with whom it is willing to be paired in a symbiotic relationship.
This shows that m ≤ n; that is, there are at least as many anemones willing to enter into a
relationship as clownfish. But an entirely symmetrical argument shows that G has a complete
matching from V2 to V1, so that every anemone is matched with a clownfish with whom it is
willing to be paired. This shows that n ≤ m; that is, there are at least as many clownfish willing
to enter into a relationship as anemones. Taken together, our findings establish that there are
precisely as many clownfish willing to enter into a relationship as anemones, so that a complete
matching from V1 to V2 is also a complete matching from V2 to V1. Therefore no one is left
out, and everyone can be matched exclusively with someone with whom they are willing to be
paired. ■



91

12.2 – Planar Graphs

The notion of a drawing of an undirected graph G has been with us since the beginning of
Chapter 10. Thus far, however, we have paid no heed to questions of how G may be drawn,
whether on a plane (such as a sheet of paper) or some other surface. Now we ask this question:
Can a given graph G be drawn on a plane in such a way that no two of its edges cross each
other? By “cross” is meant that the images (i.e. representations) of two edges in a drawing
intersect at some point in the drawing that is not an image of a vertex. An instance of two edge
images intersecting at a point that is not an image of an endpoint of either edge is called an
edge-crossing.

Definition 12.7. A planar drawing of a graph is a drawing of the graph in a plane without
edge-crossings.12 A graph is said to be planar if there exists a planar drawing of it, otherwise it
is nonplanar.

Example 12.8. In Figure 26(a) are two drawings of a graph G. The drawing at left is not a
planar drawing since it features edge-crossings: edges ad and be cross each other, as well as
edges ad and ce. The drawing at right in Figure 26(a), however, is a planar drawing, as it has
no edge-crossings. Thus G is a planar graph.

At left in Figure 26(b) is a conventional drawing of the graph Q3, the 3-cube, which features
two edge-crossings. It is a planar graph, as demonstrated at right in Figure 26(b). ■

Definition 12.9. A Euclidean set is any subset of a Euclidean space.

Thus X is a Euclidean set if X ⊆ Rn for some n ∈ Z+. Henceforth, whenever Rn is
mentioned, it will be understood that n may be any positive integer.

Definition 12.10. Let p, q ∈ Rn with p ≠ q, and let C ⊆ Rn. If there exists a continuous
bijection γ : [0, 1] → Rn such that γ(0) = p, γ(1) = q, and γ([0, 1]) = C, then C is called an
open curve from p to q.

12Another term for a planar drawing of a graph is “plane graph,” which causes no end of confusion owing to
its similarity to “planar graph,” and what is worse, the term gives the false impression that a drawing of a graph
is the same thing as the graph itself.

a

b c

d
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(a)

a

b c

d

e

(b)

Figure 26.
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Definition 12.11. Let p ∈ Rn and C ⊆ Rn. If there is a continuous function γ : [0, 1] → Rn

such that γ(0) = γ(1) = p, γ([0, 1]) = C, and γ|(0,1) is a bijection, then C is called a closed
curve at p.

If a curve C, whether open or closed, is equal to the set γ([0, 1]), then the set γ((0, 1)) =
C − {γ(0), γ(1)} is called the interior of C. Thus the interior of a curve is what is left when
the curve is shorn of its starting and ending point.

A drawing of a graph G can be made on other surfaces besides a plane, such as a sphere
or torus. If S ⊆ Rn is a surface, such as a plane, sphere, or torus, then a drawing of G on S
is called an embedding of G on S if the drawing has no edge-crossings. A drawing of G is
not the same thing as the graph G itself. A graph is a combinatorial construction, with objects
(vertices) being “combined” by associations (edges) that join them, whereas a drawing of a graph
is a topological construction consisting of sets of points on a surface. A connection between the
two constructions (a graph G and surface S) is formally established by a drawing function
e : V (G) ∪ E(G) → P(S) that maps each vertex v ∈ V (G) to a set e(v) ∈ P(S) containing a
single point in S, and each edge e ∈ E(G) to a set of points e(e) ∈ P(S) that forms a curve in
S.

The drawing function e : V (G) ∪ E(G) → P(S) is one-to-one on V (G), so that e(u) ̸= e(v)
whenever u, v ∈ V (G) are such that u ̸= v. Suppose e ∈ E(G) has endpoints u ̸= v. Then
e(u) = {pu} and e(v) = {pv} for some points pu, pv ∈ S such that pu ̸= pv, and e(e) = γe([0, 1])
for some open curve γe : [0, 1] → S from pu to pv (so γe(0) = pu and γe(1) = pv). If u = v,
so that e is a loop at u, then e(e) = γe([0, 1]) for some closed curve γe : [0, 1] → S at pu (so
γe(0) = γe(1) = pu). One last property that e is required to satisfy is this: Given any v ∈ V (G)
and e ∈ E(G), it must be that e(v) ⊈ γe((0, 1)). That is, if e(v) = {pv}, then pv /∈ γe((0, 1)),
and hence the image of no vertex in G lies in the interior of any curve that is the image of an
edge in G.

Now, given a drawing function e : V (G) ∪ E(G) → P(S), we designate the set e(G) defined
by e(G) =

⋃
e(V (G)∪E(G)) to be a drawing of G on S.13 From the way in which the drawing

function has been defined, we find that

e(G) =
⋃

e∈E(G)

γe([0, 1]). (12.2)

If γe1((0, 1)) ∩ γe2((0, 1)) = ∅ for all e1, e2 ∈ E(G), then the drawing e(G) features no curves
that intersect at a point in S that is the image of a vertex in G, and hence the drawing e(G)
has no edge-crossings. Whenever e(G) has no edge-crossings, then both the drawing function
e : V (G) ∪ E(G) → P(S) and the drawing e(G) are called an embedding of G on S. If
S = R2, then e and e(G) are called a planar embedding of G, and indeed e(G) in particular
may also be called a planar drawing according to Definition 12.7.

Example 12.12. The graph K4 has V (K4) = {v1, v2, v3, v4} and

E(K4) = {v1v2, v1v3, v1v4, v2v3, v2v4, v3v4}.

13We emphasize that the symbols e(G) and e(V (G) ∪ E(G)) represent two different things: e(G) is a set of
points in S while e(V (G) ∪ E(G)) is a set of subsets of S.
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e′(K4)

Figure 27. Two drawings of K4 in the plane, with coordinate axes suppressed.

Using the rectangular coordinate system on R2, we define a drawing function e : V (K4)∪E(K4) →
P(R2) as follows:

e(v1) = {(0, 1)}, e(v2) = {(2, 0)}, e(v3) = {(0,−1)}, e(v4) = {(−2, 0)},

and e(vivj) = γij([0, 1]), where γij(t) = (1− t)pi + tpj for 0 ≤ t ≤ 1 and pi the point for which
{pi} = e(vi). For example,

γ12(t) = (1− t)p1 + tp2 = (1− t)(0, 1) + t(2, 0) = (2t, 1− t).

Thus the image of each edge vivj in K4 is a line segment in R2 (which is an open curve) from
vi to vj. The drawing e(K4), shown at left in Figure 27, is not a planar embedding of K4

since γ24((0, 1)) ∩ γ13((0, 1)) = {(0, 0)}; that is, the interiors of the curves given by γ24 and γ13
intersect at the point (0, 0), so there is an edge-crossing.

Now we define an alternative drawing function e′ : V (K4) ∪ E(K4) → P(R2) as follows:
e′(x) = e(x) for all x ∈ V (K4) ∪ E(K4) such that x ̸= v2v4, and e′(v2v4) = γ′24([0, 1]), where

γ′24(t) = (2 cos(πt), 2 sin(πt)), 0 ≤ t ≤ 1.

The drawing e′(K4), at right in Figure 27, is free of edge-crossings and therefore is a planar
embedding of K4. This shows that K4 is a planar graph. ■

In practice, for v ∈ V (G) we will call e(v) a “point” (or even a “vertex”), and denote it
by pv rather than {pv}; and for e ∈ E(G) we will call e(e) a “curve” (or even an “edge”), and
denote it by a function γe : [0, 1] → S whose range γe([0, 1]) equals an appropriate set of points
in S. (Informally we may let v denote e(v) and e denote e(e). See Remark 12.13 below.) The
construction that we call the “drawing of G on S” we denote by e(G) as we have already done.
The drawing e(G) is the union of all the sets in e(V (G) ∪ E(G)), the image of V (G) ∪ E(G)
under e. Until the end of the section the only surface S upon which we will be drawing graphs
will be the Euclidean 2-space R2, which we refer to as “the plane.” If S = R2, then a drawing
e(G) is an embedding if and only if it is a planar drawing.

Remark 12.13. Just as a drawing of a graph G is strictly a topological representation of G,
and not G itself, so too the curves and points in the drawing are topological representations
of the edges and vertices of G, respectively, and not the edges and vertices themselves. That
is, the curves and points in the drawing are images of the edges and vertices in the graph.
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These images are formed by a drawing function e, which may or may not be an embedding.
Nonetheless we shall often (but not always) informally call these images “edges” and “vertices,”
rather than “curves” and “points,” as has already been our practice since taking up the study of
graph theory. We shall also often (but not always) informally let the same symbol that denotes
a vertex or edge to also denote the image of the vertex or edge. ■

Given an embedding e : V (G) ∪ E(G) → P(R2) of a graph G on the plane R2, we will be
interested in the anatomy of the set R2 − e(G), which is what’s left of the plane when the curves
and points of the drawing e(G) are removed. A series of definitions will be necessary to make
our ideas precise.

Definition 12.14. A Euclidean set X is connected if it consists of a single point, or if for
every p, q ∈ X with p ̸= q there exists an open path C from p to q such that C ⊆ X. A nonempty
Euclidean set that is both open and connected is called a region.

If S is a Euclidean set in Rn, then R ⊆ S is a region in S if R is connected and there
exists an open set U in Rn such that R = S ∩ U .

If X1, . . . , Xm ⊆ Rn are mutually disjoint regions, and X = X1 ∪ · · · ∪Xm, then each Xi is
a component of X.

The boundary of an open connected set X ⊆ Rn, denoted by ∂X, consists of all points
p ∈ Rn −X for which every open set containing p also contains a point in X.

This definition of the word “connected” is not to be confused with the notion of connectedness
as it applies to graphs, whether undirected or directed. There is a correspondence between
the two concepts, however: Any drawing of a connected graph, whether an embedding or not,
will necessarily be a connected Euclidean set in R2. Our definition of the component of a
Euclidean set X pertains only to open sets, which is all that we shall need aside from this fact:
if X, Y ⊆ Rn are disjoint regions, then the set X ∪ Y is not connected (we say disconnected)
since no open path from p to q exists if p ∈ X and q ∈ Y .14 An easy example is furnished by
the open intervals (0, 1) and (1, 2) in R1 (which is R): If p ∈ (0, 1) and q ∈ (1, 2), then there is
no open path from p to q that lies entirely in (0, 1) ∪ (1, 2), as such a path must include all the
points in the interval [p, q], including 1.

Now let e be a planar embedding for a graph G, which is to say the set e(G) is a planar
drawing of G in R2. The complement of the drawing, R2 − e(G), will be comprised of disjoint
regions R1, . . . , Rm ⊆ R2 for some m ∈ Z+. For each 1 ≤ i ≤ m we call Ri a face of the planar
drawing e(G). Thus any planar drawing of G has vertices, edges, and faces, analogous to any
polyhedron.

A Euclidean set in R2 is bounded if it is a subset of an open disc of finite radius, otherwise
it is unbounded. If e(G) is a planar embedding of G, then the set R2 − e(G) will always have
precisely one unbounded region, called the exterior face of e(G), and any other regions will be
bounded and called interior faces.

Example 12.15. At left in Figure 28 is a planar drawing of a graph G. Being embedded in the
plane R2, which is shaded, the drawing e(G) constitutes a Euclidean set.

At center in the figure is shown R2 − e(G). The deletion of the drawing from the plane
disconnects the latter into four faces: f1, f2, f3, and f4. All faces are interior faces save for f4,

14The tools to prove such a fact would be given in a textbook such as Topology by James Munkres.
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Figure 28.

which is unbounded and is therefore the exterior face. Being open sets, none of the faces contain
any point that lies in the drawing e(G).

Finally, at right in the figure are shown the boundaries of the four faces of e(G). We observe
that though f4 is an unbounded region, it nonetheless possesses a boundary! ■

We shall soon see that the number of faces a planar drawing of a planar graph G = (V,E)
possesses does not depend on the choice of embedding e. Indeed, the number of faces will always
equal 2− |V |+ |E|. To prove this, however, we need a couple theoretical results.

Proposition 12.16. Every subgraph of a planar graph is planar.

Proof. Let G be a planar graph. Any subgraph H of G may be obtained by deleting vertices
and edges from G, and correspondingly a drawing of H may be obtained by deleting the images
of the same vertices and edges from a planar drawing of G. Since deleting edges from a drawing
without edge-crossings can only produce a new drawing that is likewise devoid of edge-crossings,
the resultant drawing of H must be a planar drawing, and therefore H is planar. ■

If H is a subgraph of a planar graph G, and e(G) is a planar drawing of G, then e(H) is
the planar drawing of H that is obtained by deleting from the drawing e(G) the images of
precisely those edges and vertices in G that must be removed to obtain the subgraph H. In
other words, the drawing e(H) is what results by restricting the domain of the embedding
e : V (G) ∪ E(G) → P(R2) to V (H) ∪ E(H); that is, to the vertices and edges of G that are
contained in H.

Lemma 12.17. Let G be a simple connected planar graph with planar drawing e(G). Suppose
u, v ∈ V (G) are distinct vertices such that uv /∈ E(G). If there does not exist a face f of e(G)
such that u, v ∈ ∂f ,15 then G+ uv is nonplanar.

15Strictly speaking u and v are points in R2 here, not vertices in G, and we should write e(u), e(v) ∈ ∂f . But
our practice has nearly always been to use the same symbol for both a vertex in a graph and its image on the
plane. See Remark 12.13.
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Proof. In accord with our definitions, a face of the drawing e(G) is a region of R2 − e(G).
Suppose there is no region of R2− e(G) whose boundary contains both u and v. We now purpose
to add a new edge uv to the planar drawing e(G) of graph G. Starting at u, such an edge must
first enter a face f for which u ∈ ∂f , and since v /∈ ∂f , the edge must next pass into at least
one other face f ′ before reaching v. Let p ∈ f and q ∈ f ′ be points lying on uv. Since f ∪ f ′ is
disconnected, the open path from p to q along edge uv is not a subset of f ∪ f ′, and so there is
a point x on uv that lies outside f ∪ f ′. Not lying in any other region of R2 − e(G), the point x
must lie in e(G); and since uv cannot contain any vertices in G other than u and v, the point x
on uv must lie on some other edge e in the drawing e(G), but not at an endpoint of e. Thus
uv crosses e, and we conclude that any drawing of G + uv necessarily possesses at least one
edge-crossing. Therefore G+ uv is nonplanar. ■

Let G be a planar graph. For the statement of the following theorem and several later results,
we shall denote by F (G) the set of faces of a planar drawing e(G).

Theorem 12.18 (The Euler Identity). If G is a simple connected planar graph, then

|V (G)| − |E(G)|+ |F (G)| = 2.

Proof. Suppose G is a simple connected planar graph with planar drawing e(G). It will be
convenient to let v = |V (G)|, e = |E(G)|, and f = |F (G)|. The proof depends on constructing a
sequence G1, G2, . . . , Ge of subgraphs of G, with G1 being an arbitrarily chosen subgraph with
one edge, and Gk+1 being constructed from Gk by adding an edge of G that is incident to at
least one vertex in Gk. Thus |E(Gk)| = k for each 1 ≤ k ≤ e, with Ge = G. Since G is planar,
Proposition 12.16 assures us that Gk is likewise planar for all 1 ≤ k ≤ e. Define vk = |V (Gk)|
and ek = |E(Gk)|, and let fk be the number of faces of e(Gk). We prove by induction that
vk − ek + fk = 2 for all k.

The simple graph G1 has one edge and two vertices, and hence the only face of the planar
drawing e(G1) is R2 − C for some open curve C. Thus we have v1 = 2, e1 = 1, and f1 = 1, so
that v1 − e1 + f1 = 2 and the base case is affirmed.

Now let k ≥ 1 be arbitrary and suppose vk − ek + fk = 2. Choose an edge xk+1yk+1 to
add to Gk to obtain Gk+1. There are two cases to consider: (I) xk+1, yk+1 ∈ V (Gk); and (II)
xk+1 ∈ V (Gk), yk+1 /∈ V (Gk). Suppose case (I) is the reality. Then the adding of xk+1yk+1 to Gk

results in Gk+1 having the same number of vertices as Gk, so that vk+1 = vk and ek+1 = ek + 1.
Since Gk+1 = Gk + xk+1yk+1 is planar, by Lemma 12.17 there exists a face X of e(Gk) such that
xk+1, yk+1 ∈ ∂X, and so the addition of edge xk+1yk+1 to Gk will result in X being split into
two faces X1 and X2 of e(Gk+1). Hence fk+1 = fk + 1, and

vk+1 − ek+1 + fk+1 = vk − (ek + 1) + (fk + 1) = vk − ek + fk = 2.

This proves the inductive step for case (I).
Now we turn to case (II). In this scenario V (Gk+1) = V (Gk) ∪ {yk+1} and E(Gk+1) =

E(Gk) ∪ {xk+1yk+1}, so that vk+1 = vk + 1 and ek+1 = ek + 1. To determine fk+1, we note that
since yk+1 /∈ e(Gk), and hence yk+1 ∈ R2 − e(Gk), it must be that yk+1 lies in a component X of
R2 − e(Gk). This component X is a face of e(Gk), with yk+1 ∈ D ⊆ X for some open disc D
centered at yk+1, and the embedding e(Gk+1) is constructed from e(Gk) by drawing an open
curve C from yk+1 in the interior of X to xk+1. The curve C represents the edge xk+1yk+1, and
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we must have xk+1 ∈ ∂X so as to avoid edge-crossings. (To have x ∈ R2 − (X ∪ ∂X) would
force C to pass from the component X of R2 − e(Gk) into some other component.) Now, since
dGk+1

(yk+1) = 1, we find that X ′ = X − C is connected. Indeed, X ′ may be regarded as being
formed from X by deleting a line segment from a point on its boundary to some interior point,
so that X ′ is the only face of e(Gk+1) that replaces face X of e(Gk), and therefore fk+1 = fk.
Finally:

vk+1 − ek+1 + fk+1 = (vk + 1)− (ek + 1) + fk = vk − ek + fk = 2.

This proves the inductive step for case (II), and the theorem is proven. ■

Definition 12.19. Let G be a graph and S a surface. The boundary walk of a face f of an
embedding of G on S is the length of a shortest walk that traverses every edge of ∂f at least
once. The length of a boundary walk of f is the degree of f , denoted by deg(f).

Example 12.20. The graph G with V (G) = {u, v} and E(G) = uv is planar. A possible
embedding is e : V (G) ∪ E(G) → P(R2) with e(u) = (0, 0), e(v) = (1, 0), and e(uv) the line
segment in the plane from point (0, 0) to (1, 0). Indeed, we could have e(uv) = γ, where
γ : [0, 1] → R2 is given by γ(t) = (t, 0) for all 0 ≤ t ≤ 1. The planar drawing e(G) has but one
face: the external face f = R2 − {(t, 0) : 0 ≤ t ≤ 1} (which may be written R2 − γ([0, 1]) or
even R2 − [0, 1]). This is a more “formally correct” characterization of an embedding, and the
boundary of f is ∂f = {(t, 0) : 0 ≤ t ≤ 1}.

Ratcheting down the formality, we may describe a planar drawing of G as consisting simply
of the “vertices” u and v in the plane, joined by an “edge” e = uv. The external face f has
boundary ∂f = e, which of course includes the endpoints u and v. There are only two possible
boundary walks for f : ueveu and veuev (both of which have edge sequence ee). Having length
2, we conclude that the degree of f is deg(f) = 2. ■

Proposition 12.21. If G is a simple connected planar graph, then

2|E(G)| =
∑

f∈F (G)

deg(f). (12.3)

Proof. Let e ∈ E(G). There are two cases: e lies on the boundary of two adjacent faces f1 and
f2, or e lies on the boundary of only one face f .

In the former case, e appears once in the edge sequence of a boundary walk of f1, and also
once in the edge sequence of a boundary walk of f2, so that e contributes 1 to each of deg(f1)
and deg(f2), and hence contributes 2 to the sum at right in (12.3).

In the latter case, e must thrust into the face f , appearing as a “spike” in the midst of f
rather like the edge v1v2 in face f3 of Figure 28. Such an edge e will need to be traversed twice
in a boundary walk, and so again contributes 2 to the sum in (12.3).

We conclude that every e ∈ E(G) contributes 2 to
∑

f∈F (G) deg(f), thereby affirming that
the sum equals twice the total number of edges. ■

Proposition 12.22. If G is a simple connected planar graph and |V (G)| ≥ 3, then deg(f) ≥ 3
for all f ∈ F (G).
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Proof. Let f ∈ F (G). To have deg(f) = 1 is only possible if ∂f is a loop, which the simple
graph G lacks. To have deg(f) = 2 may be accomplished in two ways. One way is for ∂f to
consist of two parallel edges, which again is precluded by the hypothesis that G is simple; and
the other way is for f to be the external face in a planar drawing of the graph described in
Example 12.20, which runs afoul of our hypothesis that G have at least three vertices. Indeed,
the connected graph with the fewest edges permissible is K1,2, for which the degree of the
external face is 4; and adding another edge to K1,2 to obtain the triangle K3 results in two faces
that each have degree 3. ■

With the theory we have developed thus far, we can now fashion some simple algebraic tests
that may be used to determine the planarity or nonplanarity of countless different graphs.

Proposition 12.23. If G is a simple connected planar graph with at least 3 vertices, then
|E(G)| ≤ 3|V (G)| − 6.

Proof. Since deg(f) ≥ 3 for all f ∈ F (G) by Proposition 12.22, with Proposition 12.21 we
obtain

2|E(G)| =
∑

f∈F (G)

deg(f) ≥
∑

f∈F (G)

3 = 3|F (G)|,

and hence |F (G)| ≤ 2
3
|E(G)|. Now, by Theorem 12.18,

|E(G)| = |V (G)|+ |F (G)| − 2 ≤ |V (G)|+ 2

3
|E(G)| − 2

which yields |E(G)| ≤ 3|V (G)| − 6 as was to be shown. ■

Proposition 12.24. If G is a simple connected planar graph with at least 3 vertices and no
triangles, then |E(G)| ≤ 2|V (G)| − 4.

Proof. By Proposition 12.22, deg(f) ≥ 3 for all f ∈ F (G). However, the only face that can
have degree 3 is one whose boundary is a triangle, and since G has no triangles by hypothesis,
it must be that deg(f) ≥ 4 for all f ∈ F (G). Now, by Proposition 12.21,

2|E(G)| =
∑

f∈F (G)

deg(f) ≥
∑

f∈F (G)

4 = 4|F (G)|,

and hence |F (G)| ≤ 1
2
|E(G)|. By Theorem 12.18,

|E(G)| = |V (G)|+ |F (G)| − 2 ≤ |V (G)|+ 1

2
|E(G)| − 2

which yields |E(G)| ≤ 2|V (G)| − 4 as was to be shown. ■

There is the utility problem, which may be stated thus: Three houses are on a street,
side-by-side, and they each need three utilities: gas, electricity, and water. The source for each
of these utilities is located at a point distinct from the others, and so each house requires a gas
line, electrical cable, and water pipe to join it directly to each of the three access points. Is there
a way to do this without any lines, cables, or pipes crossing? In a graph G the houses are three
vertices h1, h2, h3, the utilities are three more vertices u1, u2, u3, and each vertex hi must be
joined with each of the vertices u1, u2, u3 to form the bipartite graph K3,3. The utility problem
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K5 K3,3

Figure 29. The Kuratowski graphs.

is equivalent to asking whether graph K3,3 has a planar drawing. Is K3,3 a planar graph or not?
A bit of trial and error may be enough to convince one that the answer is no, but how to prove
it?

We now have the tools to show easily that the so-called Kuratowski graphs,16 which are
K5 and K3,3, are both nonplanar. See Figure 29.

Proposition 12.25. The graphs K5 and K3,3 are nonplanar.

Proof. For K5 we have |E(K5)| = 10 and |V (K5)| = 5, and so |E(K5)| > 3|V (K5)| − 6. Since
K5 is clearly a simple connected graph with at least three vertices, by the contrapositive of
Proposition 12.23 we conclude that K5 is nonplanar.

For K3,3 we have |E(K3,3)| = 9 and |V (K3,3)| = 6, and so |E(K3,3)| > 2|V (K3,3)| − 4. Since
K3,3 is seen to be a simple connected graph with at least three vertices and no triangles, by the
contrapositive of Proposition 12.24 we conclude that K3,3 is nonplanar. ■

We observe that Proposition 12.23 is of no use in showing that K3,3 is nonplanar, since
|E(K3,3)| = 9 and |V (K3,3)| = 6 implies |E(K3,3)| ≤ 3|V (K3,3)| − 6. Indeed, K3,3 shows that
the converse of Proposition 12.23 is not true in general; that is, if a simple connected graph
G satisfies the inequality |E(G)| ≤ 3|V (G)| − 6, then it does not necessarily follow that G is
planar.

Proposition 12.26. Every simple planar graph has a vertex of degree 5 or less.

Proof. Let G be a simple planar graph. If |V (G)| ≤ 2, then dG(v) ≤ 2 for all v ∈ V (G) since
G is simple, and there is nothing left to prove. We henceforth assume that |V (G)| ≥ 3, and
assume further that G is connected. Suppose dG(v) ≥ 6 for all v ∈ V (G). By Theorem 10.21,

2|E(G)| =
∑

v∈V (G)

dG(V ) ≥
∑

v∈V (G)

6 = 6|V (G)|,

so that |E(G)| ≥ 3|V (G|, and hence |E(G)| > 3|V (G)| − 6. But this contradicts Proposition
12.23, which compels us to conclude there exists some u ∈ V (G) such that dG(u) ≤ 5 in the
case when G is connected.

Finally, assume that G is disconnected, and let H be a connected component. Either
|V (H)| ≤ 2 or |V (H)| ≥ 3, but whatever the case may be, by our previous arguments

16The reason for this nomenclature will be revealed in the next section.
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K3,6 3K2 K3,6 − 3K2

Figure 30. K3,3, depicted with bold edges at right, is a subgraph of K3,6 − 3K2,

there exists some u ∈ V (H) such that dH(u) ≤ 5, and the proof is done by observing that
dG(u) = dH(u). ■

Example 12.27. Show that if G is a simple connected graph with |V (G)| = 8 and |E(G)| ≥ 19,
then G is nonplanar.

Solution. We have |E(G)| ≥ 19 > 18 = 3|V (G)| − 6, so G is nonplanar by Proposition 12.23,
and the proof is done.

It is a fact that there are 838 distinct simple connected graphs that have 8 vertices and at
least 19 edges. We have thus shown that all of them are nonplanar in a single swoop. ■

Example 12.28. Let 3K2 be the graph that is the disjoint union of three copies of K2. Given
graph G with subgraph H, the graph G−E(H) may be written as G−H. See Definition 10.37.
Now, K3,6 certainly has a subgraph that is isomorphic to 3K2, so that we may meaningfully
consider the graph K3,6 − 3K2 and ask whether or not it is planar. If K3,6 has bipartition (U, V )
with U = {u1, u2, u3} and V = {v1, . . . , v6}, then K3,6 − 3K2 may be characterized as the graph
K3,6 − S, where S = {u1v1, u2v2, u3v3}. If S ′ = {u1v4, u2v5, u3v6}, then K3,6 − S ′ is isomorphic
to K3,6 − S and thus is another instantiation of K3,6 − 3K2. Indeed, K3,6 − 3K2, like K3,6 and
K2 themselves, may be regarded as an isomorphism class of graphs.

Now to the question of whether K3,6− 3K2 is planar or not. It will be convenient for vertices
to have labels, so we shall take K3,6 to have the aforementioned bipartition (U, V ), let S be
as before, and examine K3,6 − S. Among the edges in the graph we have u1vk, u2vk, u3vk for
k ∈ {4, 5, 6}, and these 9 edges and their endpoints together constitute the graph K3,3. Thus
K3,3 is a subgraph of K3,6 − 3K2, and since K3,3 is nonplanar by Proposition 12.25, it follows
by Proposition 12.16 that K3,6 − 3K2 is nonplanar. See Figure 30. ■

The average degree of a graph G, denoted by d̄(G), is simply the average of the degrees of
the vertices of G; that is,

d̄(G) =
1

|V (G)|
∑

v∈V (G)

dG(v).

The following theorem furnishes an upper bound on d̄(G), and also immediately implies
Proposition 12.26.

Theorem 12.29. If G is a connected simple planar graph, then d̄(G) < 6.
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Proof. If |V (G)| ≤ 2, then dG(v) ≤ 2 for all v ∈ V (G) since G is simple, and therefore d̄(G) < 6.
Suppose G = (V,E) is a connected simple planar graph with at least three vertices. Using
Theorem 10.21 followed by Proposition 12.23, we have

d̄(G) =
1

|V |
∑
v∈V

dG(v) =
2|E|
|V |

≤ 2(3|V | − 6)

|V |
= 6− 12

|V |
< 6,

as desired. ■
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12.3 – Subdivisions and Homeomorphisms

In this section we state Kuratowski’s theorem, which is a momentous result in the theory of
planar graphs. In the literature the theorem is typically expressed using the concept of graph
homeomorphism, which in turn depends on the notion of an edge subdivision. Before we present
the theorem, therefore, we need to establish some definitions. We will also establish a few
propositions, one of which will be needed to prove part of Kuratowski’s theorem.

Definition 12.30. Let G be a graph with incidence function ι, and let e ∈ E(G) be such that
ι(e) = {u, v} (with u = v allowed). To subdivide the edge e means to remove e from E(G),
add a new vertex w to V (G), then add distinct edges e1 and e2 to E(G) such that ι(e1) = {u,w}
and ι(e2) = {w, v}.

Another term for subdividing an edge is edge-subdivision. To subdivide a graph G
means to perform a finite sequence of edge-subdivision operations on G, with the resulting
graph being called a subdivision of G. Since the empty sequence (i.e. the sequence containing
no terms) is considered a finite sequence, we always consider G itself to be a subdivision of G.

Something like the inverse of the edge-subdivision operation is the “vertex smooth out” (or
“vertex smooth away”) operation.

Definition 12.31. Let G be a graph with incidence function ι, with w ∈ V (G) such that
dG(w) = 2, and e1, e2 ∈ E(G) such that ι(e1) = {u,w} and ι(e2) = {w, v}. To smooth out
the vertex w means to remove w from V (G) and both e1 and e2 from E(G), then add a new
edge e to E(G) such that ι(e) = {u, v}.

Another term for smoothing out a vertex is vertex-smoothing. To smooth out a graph
G means to perform a finite sequence of vertex-smoothing operations on G, with the resulting
graph being called a smoothing of G.

Any finite sequence of edge-subdivision and vertex-smoothing operations performed on a
planar graph G results in a new graph G′ that is likewise planar. To show this, it is enough to
show that any single edge-subdivision or vertex-smoothing operation preserves the planarity of
G.

Let G have incidence function ι, let e be any embedding of G in the plane, and for e ∈ E(G)
let ι(e) = {u, v}. The embedding e maps u, v ∈ V (G) as points pu, pv ∈ R2, and maps e as
a curve γe in R2 from pu to pv (with pu = pv if and only if u = v). The curve γe may be
parametrized by a vector-valued function γe : [0, 1] → R2 of the form γe(t) = (x(t), y(t)) for
0 ≤ t ≤ 1, with γe|(0,1) being one-to-one so that the curve does not cross itself. (It is often
desirable, though not always essential, that the parametrization have [0, 1] as its domain.)
Specifically we have e(u) = pu, e(v) = pv, and e(e) = γe, where γe(0) = pu and γe(1) = pv.
We now subdivide e once, precisely in the manner described in Definition 12.30, in order to
obtain a new graph G′. We now find an embedding e′ : G′ → R2 of G′ so as to demonstrate
the planarity of G′. Indeed, much is the same: e′(v′) = e(v′) for all v′ ∈ V (G′)− {w} = V (G),
and e′(e′) = e(e′) for all e′ ∈ E(G′) − {e, e1, e2}. But how to define e′(w), e′(e1), and e′(e2)?
We could do this: e′(w) = γe(s) for some 0 < s < 1, e′(e1) = γe|[0,s], and e′(e2) = γe|[s,1]. If γe
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happens to be parametrized by

γe(t) = (1− t)pu + tpv, t ∈ [0, 1],

which is a line segment from pu to pv, then letting e′(w) = γe(1/2) places the image of the new
vertex w in the drawing e′(G′) right where the midpoint of the image of the edge e in the drawing
e(G) is located. In any case the point pw := e′(w) will be located in e′(G′) at coordinates that
the curve γe passes through in e(G), excluding the endpoints. Meanwhile e′(e1) = γe|[0,s] traces
the old curve γe : [0, 1] → R2 from pu to pw, and e′(e2) = γe|[s,1] traces γe from pw to pv. (We
may reparametrize the new curves γe|[0,s] and γe|[s,1] so that their domains are both [0, 1], if
desired.) Since the new edges e1 and e2 in G′ have images that follow the footsteps of the image
of the deleted edge e, with the curve for e1 ending at the same point pw where the curve for e2
begins, the replacing of e with w, e1 and e2 introduces no edge-crossings as we pass from the
planar drawing e(G) to the new drawing e′(G′). Therefore e′(G′) is a planar drawing of G′ (i.e.
e′ is an embedding of G′ in the plane), and we conclude that the subdivision G′ is planar.

Now we suppose that we’ve smoothed out a vertex w in a planar graph G, as described in
Definition 12.31. Let e be an embedding of G, with pu = e(u), pv = e(v), pw = e(w), γe1 = e(e1),
and γe2 = e(e2). We define γe1 , γe2 : [0, 1] → R2 such that γe1(0) = pu, γe1(1) = γe2(0) = pw, and
γe2(1) = pv. We now define an embedding e′ of the graph G′ that results from smoothing out w
as follows: e′(v′) = e(v′) for all v′ ∈ V (G′), e′(e′) = e(e′) for all e′ ∈ E(G′)− {e}, and e′(e) = γe
for γe : [0, 1] → R2 given by

γe(t) =

{
γe1(2t), t ∈ [0, 1/2)

γe2(2t− 1), t ∈ [1/2, 1].

The curve γe passes through the same points in R2 as the two curves γe1 and γe2 taken together,
so that γe([0, 1]) = γe1([0, 1]) ∪ γe2([0, 1]). Thus no edge-crossings are introduced in the drawing
e′(G′), so that e′ is indeed an embedding of G′, and therefore G′ is planar.

It is evident that if G is subdivided as in Definition 12.30 to obtain G′, then smoothing out
w in G′ will restore G.

We now have established that a single instance of subdividing or smoothing a planar graph
G results in a new graph G′ that is also planar. With this fact in hand it is straightforward
to prove the following proposition by induction on the total number of edge-subdivision and
vertex-smoothing operations applied to G.

Proposition 12.32. A finite sequence of edge-subdivision and vertex-smoothing operations
performed on a planar graph G results in a new graph that is also planar.

Proposition 12.33. A subdivision of a graph G is planar if and only if G itself is planar.

Proof. Suppose a subdivision G′ of the graph G is planar. Since G may be obtained from G′

by performing a finite sequence of vertex-smoothing operations, Proposition 12.32 implies that
G is planar. Conversely, if G is planar, then certainly any subdivision G′ is planar by the same
proposition. ■

Definition 12.34. Graphs G and H are homeomorphic if a subdivision of G is isomorphic
to a subdivision of H.
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Proposition 12.35. Any graph is homeomorphic to any of its subdivisions.

Proof. Let G be a graph, and let G′ be a subdivision of G. We must show that a subdivision
of G is isomorphic to a subdivision of G′. This can be accomplished by showing that G′ is
isomorphic to a subdivision of G′. Indeed, G′ is considered to be a subdivision of itself, and so,
since it is clear that G′ is isomorphic to itself, the proof is done. ■

As one might surmise, since a graph isomorphism preserves edges, any graph that is isomorphic
to a planar graph is itself planar. This fact is needed to prove the following.

Proposition 12.36. Let G and H be homeomorphic graphs. Then G is planar if and only if H
is planar.

Proof. Suppose that G is planar. Since G and H are homeomorphic, some subdivision G′ of G
is isomorphic to some subdivision H ′ of H. By Proposition 12.33, G′ is planar, and hence H ′ is
planar since G′ ≃ H ′. Therefore H is planar by Proposition 12.33. The proof of the converse is
much the same. ■

Proposition 12.37. If a graph G contains a subgraph that is homeomorphic to a nonplanar
graph, then G is nonplanar.

Proof. Suppose graph G contains a subgraph H that is homeomorphic to a nonplanar graph.
Then H is nonplanar by Proposition 12.36, and therefore G is likewise nonplanar by Proposition
12.16. ■

Corollary 12.38. If a graph G contains a subgraph that is homeomorphic to K5 or K3,3, then
G is nonplanar.

Proof. Suppose G contains a subgraph that is homeomorphic to K5 or K3,3. Both of these
graphs are nonplanar by Proposition 12.25, and thus G itself is nonplanar by Proposition
12.37. ■

The contrapositive of Corollary 12.38 states that if G is planar, then G contains no subgraph
that is homeomorphic to K5 or K3,3. It turns out that the converse of this statement is true as
well, but it is considerably more difficult to prove. Kasimir Kuratowski was the first to publish
a proof in 1930, and we present now his celebrated theorem.

Theorem 12.39 (Kuratowski’s Theorem). A graph is planar if and only if it contains no
subgraph homeomorphic to K5 or K3,3.

Definition 12.40. The barycentric subdivision of a graph G is the subdivision of G obtained
by subdividing every edge of G.
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When the operation of barycentric subdivision is executed once on a graph G, sometimes
the graph G′ that results is called the first barycentric subdivision of G. If barycentric
subdivision is then carried out on G′, the resultant graph G′′ is then called the second
barycentric subdivision of G, and so on. Of great utility is barycentric subdivision’s effect
of transforming a general graph featuring loops or parallel edges into a simple graph. Indeed,
the first barycentric subdivision of any general graph G will always be loopless, and the second
barycentric subdivision will always be a simple graph. We will prove these assertions presently,
but first we will establish another fact, namely that the barycentric subdivision of any graph is
bipartite.

Proposition 12.41. The barycentric subdivision of any graph is bipartite.

Proof. Let G be a graph, and let G′ be the barycentric subdivision of G. Define V = V (G) and
W = V (G′)−V , so thatW is the set of the new vertices inserted into G to effect the subdivision.
Now, any e′ ∈ E(G′) derives from the edge-subdivision of some e ∈ E(G), so that e′ has one
endpoint in V and the other in W . Therefore G′ is bipartite, with bipartition (V,W ). ■

Proposition 12.42. The barycentric subdivision of any graph is loopless.

Proof. Let G be a graph, and let ℓ be a loop in G at some vertex v. Applying the operation of
edge-subdivision on ℓ, a new vertex w is introduced, whereafter the loop ℓ is replaced by two
parallel edges in G′ having endpoints v and w. Therefore G′ is loopless. ■

Proposition 12.43. The barycentric subdivision of any loopless graph is a simple graph.

Proof. Let G be a loopless graph, and let G′ be the barycentric subdivision of G. No edge-
subdivision operation can possibly result in parallel edges where none existed before, and so if
G happens to be a simple graph, by Proposition 12.42 it follows that G′ is simple.

Now suppose that e1, e2 ∈ E(G) are parallel edges having u, v ∈ V (G) as endpoints, where
u ̸= v since G is loopless. Barycentric subdivision inserts two new vertices w1 and w2 into G,
then replaces e1 with e′1 = uw1 and e′′1 = vw1, and e2 with e′2 = uw2 and e′′2 = vw2. Since the
vertices u, v, w1, and w2 are distinct, none of the four new edges is parallel to another, and
therefore G′ can have no parallel edges. Again, Proposition 12.42 guarantees that G′ also has
no loops, and therefore G′ is simple. ■

In the course of proving the next proposition, we make use of the fact that, for n ≥ 2, the
nth barycentric subdivision of a graph G is the first barycentric subdivision of the (n − 1)st
barycentric subdivision of G.

Proposition 12.44. The second barycentric subdivision of any graph is a simple graph.

Proof. Let G be a graph, and let G′ and G′′ be the first and second barycentric subdivision
of G, respectively. By Proposition 12.42, G′ is loopless; and since G′′ is the first barycentric
subdivision of G′, Proposition 12.43 implies that G′′ is a simple graph. ■

Proposition 12.45. Every graph is homeomorphic to a bipartite graph.
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Proof. Let G be a graph. By Proposition 12.41 the barycentric subdivision of G is a bipartite
graph, and since G is homeomorphic to any subdivision of itself by Proposition 12.35, the proof
is done. ■
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12.4 – Vertex Colorings

Recall that when partitioning a nonempty set S, the mutually disjoint sets constituting
the partition are called cells. Given a graph G, what is the minimum number of cells that a
partition of the vertex set V (G) must have in order for it to be possible that no edge in E(G)
has both endpoints located at vertices in the same cell? If we assign a different color to the
vertices in each cell, so that all vertices in one cell are red, all vertices in another cell are blue,
and so on, then all the vertices in G will be given a color since the union of all the cells must
equal V (G). Coloring all the vertices of a graph is therefore equivalent to a partitioning of that
graph’s vertex set, with the use of colors merely serving as an aid in representing a partition in
a more intuitive or visually appealing way.

Definition 12.46. Let G be a graph and C a set of k distinct colors. A surjective function
c : V (G) → C is a vertex k-coloring of G. The color class of a color i ∈ C is the set Vi of
all vertices assigned the color i, so that Vi = {v ∈ V (G) : c(v) = i}.

A vertex coloring of G is a vertex k-coloring of G for any k ≥ 1. A proper vertex
coloring of G is a vertex coloring such that no adjacent vertices are assigned the same color. If
G has a proper vertex k-coloring, then it is said to be vertex k-colorable.

Since vertex colorings of graphs is the only sort of coloring we entertain in this section, we
shall often omit the word “vertex” when using many of the terms defined in this section. For
instance, whenever we make mention of a “proper coloring,” it is to be understood that we
mean a proper vertex coloring. More care in this matter will be taken in the next section when
our attention turns to map colorings.

Though the elements of the set C in Definition 12.46 are called colors, in practice these
elements are typically positive integers. Thus if C = {1, 2, . . . , k}, then C contains the “colors”
1, 2, . . . , k. It would, of course, be impractical to employ literal colors in the case when, say,
k = 100.

If a graph G happens to have a loop at v ∈ V (G), then the graph is “uncolorable” in the
sense that it can have no proper coloring: v is, after all, adjacent to itself.

For the statement of the next proposition we make the following definition: A set of vertices
S in a graph G is independent (or stable) if no two distinct vertices in S are joined by an
edge. The independence number (or stability number) of G, denoted by α(G), is the
number of vertices in an independent set in G of maximum cardinality.

Proposition 12.47. Let c be a vertex k-coloring of graph G. Then c is a proper vertex k-coloring
of G if and only if each of the color classes associated with c is an independent set of vertices.

Proof. Suppose c is a proper k-coloring of G. Let Vi be a color class associated with c, and
suppose u, v ∈ Vi. Thus u and v are both assigned the same color i, and there can be no edge
in G joining u and v since c is a proper coloring. Therefore Vi is an independent set of vertices.

For the converse, suppose c is not a proper k-coloring of G. Then there exist vertices
u, v ∈ V (G) that have been assigned the same color, such as i, and yet are joined by an edge.
Since both u and v are in the same color class Vi, it follows that Vi is not an independent set of
vertices. ■
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Definition 12.48. The vertex chromatic number of a graph G, denoted by χ(G), is the
minimum number of distinct colors required for a proper vertex coloring of G. If χ(G) = k, then
G is vertex k-chromatic. A chromatic coloring of G is a proper coloring of G that uses
precisely χ(G) colors.

We observe that if graph G is k-chromatic, so that χ(G) = k, then G has no proper ℓ-coloring
for any ℓ < k.

To determine χ(G) for a given graph G is often no trivial matter. A common approach is to
first obtain an upper bound for χ(G) by finding a proper k-coloring of G, so that χ(G) ≤ k;
then, a subgraph H of G is identified for which it may be readily demonstrated that χ(H) = k,
whereupon the following proposition is used.

Proposition 12.49. If H is a subgraph of graph G, then χ(G) ≥ χ(H).

Proof. Suppose H is a subgraph of G. Suppose χ(G) = k < χ(H), so that the minimum number
of colors required to achieve a proper coloring of G is k. For C = {1, 2, . . . , k}, let c : V (G) → C
be a proper k-coloring of G, and let C ′ = c(V (H)) ∩ C. Then c|V (H) : V (H) → C ′ is a proper
|C ′|-coloring of H for |C ′| ≤ k, and hence χ(H) ≤ k. Having arrived at a contradiction, we
conclude that χ(G) ≥ χ(H). ■

We give now a few more propositions that impose upper or lower bounds on χ(G). As in
§11.1 the symbol ∆(G) denotes the largest degree attained by the vertices of an undirected
graph G; that is, ∆(G) = max{dG(v) : v ∈ V (G)}.

Proposition 12.50. If G is a simple graph, then χ(G) ≤ ∆(G) + 1.

Proof. Suppose G is a simple graph, with V (G) = {1, 2, . . . , n}. Let C be a set of the form
{1, 2, . . . , k}. We construct a vertex coloring c : V (G) → C of G as follows: let c(v1) = 1, and for
each 2 ≤ i ≤ n, starting at 2 and proceeding in ascending order to n, let c(vi) equal the smallest
color number in C that has not been assigned to any vertex in Si := {v1, . . . , vi−1} ∩ NG(vi).
This “sequential vertex coloring” procedure results in a proper coloring of G. Now, |Si| ≤ ∆(G)
since |NG(vi)| ≤ ∆(G), and so at worst the colors 1, . . . ,∆(G) have been assigned to the vertices
in Si, so that vi, being adjacent to them all, is assigned the color numbered ∆(G) + 1. ■

Proposition 12.51. If G is a graph with k mutually adjacent vertices, then χ(G) ≥ k.

Proof. Suppose G contains a set of vertices V = {v1, . . . , vk} that are mutually adjacent, so
that each vi is joined to all vertices in V − {vi}. If fewer than k colors are assigned to the
vertices in V (G), then at least two vertices u, v ∈ V must be the same color. But u and v are
adjacent, so that the resultant coloring of G cannot be proper. Therefore any proper coloring of
G must employ at least k colors, so that χ(G) ≥ k. ■

Example 12.52. In Figure 31 is shown a proper vertex 4-coloring of a graph G using the
color set C = {1, 2, 3, 4}. The four shaded vertices are mutually adjacent, and so χ(G) ≥ 4 by
Proposition 12.51. On the other hand, the fact that there exists a proper vertex 4-coloring of G
implies that χ(G) ≤ 4. Therefore it must be that χ(G) = 4. ■
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Figure 31.

A clique in a graph G is a maximal set of mutually adjacent vertices in G. Thus S ⊆ V (G)
is a clique in G if S is a set of mutually adjacent vertices in G, and there exists no S ′ ⊆ V (G)
that is a set of mutually adjacent vertices such that S ′ ⊃ S. The clique number of G, denoted
by ω(G), is the number of vertices in a clique in G of maximum cardinality.

Corollary 12.53. If G is a graph, then χ(G) ≥ ω(G).

Proof. The corollary follows as a direct consequence of Proposition 12.51 and the definition of
clique number. ■

Proposition 12.54. If G is a graph, then

χ(G) ≥
⌈
|V (G)|
α(G)

⌉
. (12.4)

Proof. Let c : V (G) → C be a proper coloring of G. For each i ∈ C, the color class Vi defined
by c is an independent set by Proposition 12.47, so that |Vi| ≤ α(G), which in turn implies that∑

i∈C

|Vi| ≤
∑
i∈C

α(G) ↪−→ |V (G)| ≤ α(G)|C| ↪−→ |C| ≥ |V (G)|
α(G)

,

and finally

|C| ≥
⌈
|V (G)|
α(G)

⌉
since |C| must be an integer. Since c is an arbitrary proper coloring, the inequality (12.4)
follows. ■

Proposition 12.55. If G is a graph, then χ(G) = 1 if and only if E(G) = ∅.

Proof. Suppose χ(G) = 1. Then G has no loops, since otherwise G would be uncolorable and
hence χ(G) undefined. Also G has no edges that are not loops, since otherwise two distinct
vertices would be joined by an edge and so need to be assigned two different colors in a proper
coloring, implying χ(G) ≥ 2. Therefore E(G) = ∅.

Now suppose that E(G) = ∅. Then no vertex is joined to any other, and so may all be
assigned the same color in a proper coloring. Therefore χ(G) = 1. ■

The next proposition is in essence Theorem 10.12, one of the first results we stated and
proved in our study of graph theory.
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Proposition 12.56. Suppose G is a graph with E(G) ̸= ∅. Then G is bipartite if and only if
χ(G) = 2.

Proof. Suppose G is bipartite, and let (V1, V2) be a bipartition of V (G). Since a bipartite graph
cannot have loops, we have χ(G) ≥ 2 by Proposition 12.55. Now, both V1 and V2 are nonempty
since E(G) ̸= ∅, and so a proper 2-coloring may be realized by assigning one color to all the
vertices in V1, and another color to all the vertices in V2. Therefore χ(G) = 2.

For the converse, suppose χ(G) = 2. Let V1 and V2 be the two color classes associated with a
chromatic coloring of G. Then (V1, V2) is a bipartition of V (G), and therefore G is bipartite. ■

A graph G is a path graph if there exists a path that contains all the vertices and edges of
G. We let Pn denote a path graph comprised of n vertices and n− 1 edges.

Corollary 12.57. Let G be a graph with at least one edge.

1. If G is a path graph Pn for n ≥ 2, then χ(Pn) = 2.
2. If G is a tree T , then χ(T ) = 2.
3. If G is a hypercube graph Qn, then χ(Qn) = 2.
4. If G is an even cycle C2n for n ≥ 1, then χ(C2n) = 2.

Proof.
Proof of (1). Let Pn be a path graph for n ≥ 2, so that E(Pn) ≥ 1, and Pn has vertex-edge
sequence v1e1v2 · · · vn−1en−1vn. Defining V = {vk : k is odd} and W = {vk : k is even}, we find
(V,W ) to be a bipartition of V (Pn) = {v1, . . . , vn}, and hence Pn is a bipartite graph. Therefore
χ(Pn) = 2 by Proposition 12.56.

Proof of (2). Suppose T is a tree. By definition T is acyclic, hence has no odd cycles, and so is
bipartite by Theorem 10.42. Therefore χ(T ) = 2 by Proposition 12.56.

Proof of (3). Any hypercube graph Qn is bipartite by Proposition 10.15, and therefore χ(Qn) = 2
by Proposition 12.56.

Proof of (4). Suppose C2n is an even cycle with 2n vertices. These vertices may be labeled
v1, . . . , v2n such that E(C2n) = {vivi+1 : 1 ≤ i ≤ 2n}, where we define v2n+1 = v1. If we then
define V1 = {v2i : 1 ≤ i ≤ n} and V2 = {v2i+1 : 0 ≤ i ≤ n}, then V1 and V2 are independent
sets such that (V1, V2) forms a bipartition of V (G). Therefore C2n is a bipartite graph, and
χ(C2n) = 2 by Proposition 12.56. ■

Proposition 12.58. If C2n+1 is an odd cycle for n ≥ 1, then χ(C2n+1) = 3.

Proof. The vertices of C2n+1 may be labeled v1, . . . , v2n+1 such that C2n+1 = v1v2 · · · v2n+1v1.
Two independent sets in C2n+1 are V1 = {v2i : 1 ≤ i ≤ n} and V2 = {v2i−1 : 1 ≤ i ≤ n}. Both
sets have cardinality n, and since there is no independent set of greater cardinality we have
α(C2n+1) = n. Now, by Proposition 12.54,

χ(C2n+1) ≥
⌈
|V (C2n+1)|
α(C2n+1)

⌉
=

⌈
2n+ 1

n

⌉
= 3;



111

on the other hand, χ(C2n+1) ≤ ∆(C2n+1) + 1 = 3 by Proposition 12.50. Therefore it must be
that χ(C2n+1) = 3. ■

The join of graphs G and H, denoted by G+H, is constructed from the disjoint union G⊔H
of the graphs by joining each vertex in G to each vertex in H. Thus V (G+H) = V (G) ⊔ V (H)
and

E(G+H) = E(G) ⊔ E(H) ⊔ {uv : u ∈ V (G) and v ∈ V (H)}.
If v is a vertex not in graph G, then the join of v to G, denoted by G+ v, is constructed from
G by joining v to each vertex in G. Thus V (G+ v) = V (G) ∪ {v} and

E(G+ v) = E(G) ⊔ {uv : u ∈ V (G)}.

It can be seen that G+ v ≃ G+K1 in any case.

Lemma 12.59. Each color class associated with a proper vertex coloring of G+H is a subset
of either V (G) or V (H).

Proof. Let V ⊆ V (G+H) be a color class associated with a proper coloring of G+H. Suppose
V ∩V (G) ̸= ∅ and V ∩V (H) ̸= ∅, so there exists some u ∈ V (G) in V , and also some v ∈ V (H)
in V . But in G+H the vertices u and v are joined by an edge, and since these vertices have been
assigned the same color, the vertex coloring of G+H is not proper. This being a contradiction,
either V ∩V (G) or V ∩V (H) must be empty, and therefore either V ⊆ V (G) or V ⊆ V (H). ■

Proposition 12.60. For any graphs G and H, χ(G+H) = χ(G) + χ(H).

Proof. Since G and H are both subgraphs of G + H, any proper coloring of G + H must
necessarily define a proper coloring of both G and H. However, when constructing a proper
coloring of G+H, Lemma 12.59 makes clear that none of the colors used for a proper coloring
of G can be the same as any of the colors used for a proper coloring of H. Thus any proper
coloring of G+H must utilize at least χ(G) + χ(H) colors, so that χ(G+H) ≥ χ(G) + χ(H).

Next, define a chromatic coloring cG : V (G) → CG of G, and also a chromatic coloring
cH : V (H) → CH of H, such that CG ∩ CH = ∅. Since |CG| = χ(G) and |CH | = χ(H), the
total number of colors used is χ(G) + χ(H). Adding edges to G ⊔H to produce G +H, we
find that the colors assigned to the vertices of G+H by cG and cH define a proper coloring of
G+H. Thus a chromatic coloring of G+H must use at most χ(G) + χ(H) colors, implying
that χ(G+H) ≤ χ(G) + χ(H). ■

Proposition 12.61. If W2n is an even wheel for n ≥ 1, then χ(W2n) = 3.

Proof. We observe that W2n = C2n +K1. By Corollary 12.57, χ(C2n) = 2; and by Proposition
12.55, χ(K1) = 1. Therefore χ(W2n) = χ(C2n + K1) = χ(C2n) + χ(K1) = 3 by Proposition
12.60. ■

Proposition 12.62. If W2n+1 is an odd wheel for n ≥ 1, then χ(W2n+1) = 3.

Proof. By Propositions 12.58 and 12.55, respectively, χ(C2n+1) = 3 and χ(K1) = 1. Therefore
χ(W2n+1) = χ(C2n+1 +K1) = χ(C2n+1) + χ(K1) = 4 by Proposition 12.60. ■
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Proposition 12.63. For any n ≥ 1, χ(Kn) = n.

Proof. Since ∆(Kn) = n− 1, Proposition 12.50 implies that χ(Kn) ≤ ∆(Kn) + 1 = n. On the
other hand, Kn has n mutually adjacent vertices, so that χ(Kn) ≥ n by Proposition 12.51. ■

In 1941, Leonard Brooks proved a result that is a significant improvement over the upper
bound on χ(G) furnished by Proposition 12.50. We state his theorem here without proof.

Theorem 12.64 (Brooks’ Theorem). If G is a simple connected graph that is neither complete
nor an odd cycle, then χ(G) ≤ ∆(G).

We now consider a few results concerning the effect, if any, that removing a vertex or edge
from a graph G has on the graph’s chromatic number χ(G). To start, upper and lower bounds
on the possible change in χ(G) when a vertex or edge is deleted are given by the following.

Proposition 12.65. Let G be a graph.

1. For any v ∈ V (G), χ(G)− 1 ≤ χ(G− v) ≤ χ(G).
2. For any e ∈ E(G), χ(G)− 1 ≤ χ(G− e) ≤ χ(G).

Proof. That χ(G− v) ≤ χ(G) and χ(G− e) ≤ χ(G) follows from Proposition 12.49. Now, for
any v ∈ V (G), the minimum number of colors required for a proper coloring of G− v is either 1
less than the minimum required for G (so that χ(G−v) = χ(G)−1), or else it is the same as the
minimum required for G (so that χ(G− v) = χ(G) > χ(G)− 1). Hence χ(G)− 1 ≤ χ(G− v),
and by a similar argument χ(G)− 1 ≤ χ(G− e) for any e ∈ E(G). ■

Since the vertex chromatic number of any graph G must be an integer whenever it exists,
Proposition 12.65 implies that χ(G− v) must equal χ(G)− 1 whenever it does not equal χ(G),
and the same holds for χ(G− e).

Definition 12.66. An edge e or vertex v in a graph G is chromatically critical if χ(G−e) =
χ(G) − 1 or χ(G − v) = χ(G) − 1, respectively. We say G is chromatically k-critical if
χ(G) = k and χ(H) < k for every proper subgraph H of G. A graph is chromatically critical
if it is chromatically k-critical for some integer k.

The word “chromatically” in the terms defined above is often omitted in practice, and some
authors never include it. Our practice will be to omit it except in the statements of propositions,
theorems, and the like.

Proposition 12.67. For graph G let e ∈ E(G). If e is a chromatically critical edge of G, then
every chromatic coloring of G− e must assign the same color to both endpoints of e.

Proof. Suppose there is a chromatic coloring c : V (G− e) → C of G− e that assigns different
colors to the endpoints of e, so |C| = χ(G − e). Then c : V (G) → C is a proper coloring
of G, so χ(G) ≤ |C| = χ(G − e), whereas χ(G − e) ≤ χ(G) by Proposition 12.49. Hence
χ(G− e) = χ(G) ̸= χ(G)− 1, and we conclude that e is not a critical edge of G. ■
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Proposition 12.68. If G is a chromatically k-critical graph, then each vertex is chromatically
critical.

Proof. Suppose G is a chromatically k-critical graph, and fix v ∈ V (G). Since G− v is a proper
subgraph of G we have χ(G−v) < k = χ(G). Since χ(G−v) must equal either χ(G) or χ(G)−1
by Proposition 12.65, it follows that χ(G − v) = χ(G) − 1, and therefore v is chromatically
critical. ■

Theorem 12.69. If G is a chromatically k-critical graph, then dG(v) ≥ k − 1 for all v ∈ V (G).

Proof. Suppose G is a chromatically k-critical graph, so χ(G) = k. Assume there exists some
v ∈ V (G) such that dG(v) < k−1. Since χ(G−v) = k−1 by Proposition 12.68, there is a proper
(k − 1)-coloring c : V (G− v) → C of G− v. Observing that |C| = k − 1 and |NG(v)| ≤ k − 2,
there exists some color i ∈ C that has not been assigned to any of the neighbors of v, and so
we extend the domain of c to V (G) by designating c(v) = i. Now c : V (G) → C is a proper
(k − 1)-coloring of G, which implies that χ(G) ≤ k − 1 = χ(G)− 1. This being a contradiction,
we conclude that dG(v) ≥ k − 1 for all v ∈ V (G). ■
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12.5 – Map Colorings

Let G be a graph and S a surface, and suppose there exists an embedding of G on S. This
is to say there is a drawing function e : V (G) ∪ E(G) → P(S) that produces a drawing of
G on S, denoted by e(G) as in §12.2, that features no edge-crossings. The map of G on S
corresponding to e is the drawing e(G) together with its set of faces, which we denote by Fe(G).
Of course, each face f ∈ Fe(G) is a subset of S, and it is always true that e(G) ∪

(⋃
Fe(G)

)
is equal to S itself, so we must be clear that by a “map of G on S” we do not mean simply
the union of the drawing e(G) with its faces. Rather, there is the union of curves that is the
drawing e(G), as in Equation (12.2), and coupled with this drawing is the collection of regions
in S that are the drawing’s faces. In this sense the map of G on S that is associated with a
particular drawing function e is an ordered pair (e(G), Fe(G)), just as the graph G itself is an
ordered pair (V (G), E(G)). For brevity we shall denote (e(G), Fe(G)) by the symbol Me(G).

Two faces of a mapMe(G) are said to meet if their boundary walks share an edge in common.
This is to say faces f1, f2 ∈ Fe(G) meet if and only if there exists an edge e ∈ E(G) such that
the curve e(e) that is the image of e on the surface S is a subset of ∂f1 ∩ ∂f2. A single face of
Me(G) is said to meet itself if its boundary walk traverses an edge more than once.

Definition 12.70. Let Me(G) be a map of graph G on S, and let C be a set of k distinct colors.
A surjective function c : Fe(G) → C is a map k-coloring of Me(G). The color class of a
color i ∈ C is the set Fi of all faces assigned the color i, so that Fi = {f ∈ Fe(G) : c(f) = i}.

A map coloring of G is a map k-coloring of Me(G) for any k ≥ 1. A proper map
coloring of Me(G) is a map coloring such that no faces in Fe(G) that meet are assigned the
same color. If Me(G) has a proper map k-coloring, then it is said to be map k-colorable.

We emphasize that if a map Me(G) has a face that meets itself, then the map cannot be
properly colored.

Definition 12.71. The chromatic number of a map Me(G), denoted by χ(Me(G)), is the
minimum number of distinct colors required for a proper map coloring ofMe(G). If χ(Me(G)) = k,
then Me(G) is map k-chromatic. A chromatic coloring of Me(G) is a proper coloring of
Me(G) that uses precisely χ(Me(G)) colors.

f4 f3
f1

f2

(a)

4 3
1

2

(b)

3
1

2

(c)

Figure 32.
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A map on a plane may sometimes be considered without reference to a graph G, as in the
next example, in which case we may simply denote the map by a symbol such as M .

Example 12.72. The chromatic number of the simple map M with face set F = {f1, f2, f3, f4}
in Figure 32(a) may be determined by inspection. Indeed, in Figure 32(b) is shown a proper
map 4-coloring c : F → {1, 2, 3, 4} of M given by c(fi) = i for each 1 ≤ i ≤ 4, and so χ(M) = 4
since it is clear that no proper k-coloring of M exists for k < 4. However, if we exclude the
unbounded external face f4 of M from consideration (every map on a plane possesses precisely
one external face), then what’s left is a “bounded map” M ′ having only the faces f1, f2, and f3,
and a proper 3-coloring of M ′ is obtained simply by restricting c to the face set F − {f4}. See
Figure 32(c). ■

It may not have escaped the reader’s notice that many of the definitions we have furnished
thus far in this section closely parallel definitions given in the previous section on vertex
colorings. This may kindle a suspicion that some of the theory developed in §12.4 concerning
vertex colorings may in similar fashion carry over to our study of map colorings. However, while
we have established many results about graphs by this point, we have no results about maps.
This observation suggests that the most efficient strategy should be the one that converts any
problem in map coloring into an equivalent problem in vertex coloring. What is known as the
dual graph of a map Me(G) makes this possible.

Remark 12.73. For the rest of this section all maps will be on the plane, so that the only
surface S under consideration will be specifically R2.

We now describe what the dual graph of a map is. Let Me(G) = (e(G), Fe(G)) be a map
of G on R2, so that G is a planar graph with planar drawing e(G). The dual graph of Me(G),
denoted by G∗, is constructed as follows: First, for each f ∈ Fe(G) let f

∗ ∈ V (G∗), so that
V (G∗) = {f ∗ : f ∈ Fe(G)}; then, for any f1, f2 ∈ Fe(G), if the boundary walks of f1 and f2
have k edges in common, then E(G∗) will contain precisely k edges with endpoints f ∗

1 and f ∗
2 .

If a face f meets itself by virtue of its boundary walk traversing k edges more than once, then
E(G∗) will contain precisely k loops f ∗f ∗; that is, the dual graph G∗ will have k distinct loops
at the vertex f ∗. The vertices, edges, and faces of the graph G are called primal vertices,
primal edges, and primal faces, respectively, while the vertices, edges, and faces of the dual
graph G∗ are called dual vertices, dual edges, and dual faces, respectively.

From the description of how a dual graph is constructed, it is evident that if a map Me(G)
has no face that meets itself, then the dual graph G∗ will be a simple graph. Less obvious is
that if Me(G) is a map of G on the plane, so that e(G) is a planar drawing of G, then the dual
graph G∗ is necessarily also a planar graph. When constructing a dual graph of a map, it is
usually desirable to present a drawing of the dual graph without edge-crossings, so that it is a
planar drawing.

Example 12.74. In Figure 33(a) is shown a planar drawing e(G) of a planar graph G, which
together with the set of faces Fe(G) = {f1, f2, f3, f4, f5} constitutes a map of G on R2 that we
denote by Me(G).

We now construct the dual graph of the map Me(G). In Figure 33(b) a dual vertex f ∗
k is

placed somewhere in the interior of each face fk ∈ Fe(G). Now, faces f1 and f2 meet since their



116

f1

f2f3 f4

f5

(a)

e6

e7

e8

e9

f ∗
1

f ∗
2

f ∗
3 f ∗

4

f ∗
5

e5e4
e3e2

e1

(b)

f ∗
1

f ∗
2

f ∗
3 f ∗

4

f ∗
5

(c)

Figure 33. In (a) is shown a planar drawing of graph G. In (c) is shown, in red,
a planar drawing of the dual graph G∗.

boundary walks have edge e1 in common, and so the dual vertices f ∗
1 and f ∗

2 are joined by a
single edge f ∗

1 f
∗
2 in the dual graph G∗. In Figure 33(c) the image of this edge in depicted in

red as an open curve that passes through the interior of the image of e1. The endpoints of this
curve are those points in the plane that are the images of vertices f ∗

1 and f ∗
2 , which we denote

by these same symbols in the figure.
Faces f2 meets faces f3 and f4 along edges e2 and e3, respectively, and so in Figure 33(c) we

have curves representing the edges f ∗
2 f

∗
3 and f ∗

2 f
∗
4 in the planar drawing of G∗. Also f2 meets

itself along edge e7, so there is a loop f ∗
2 f

∗
2 in E(G∗), and the image of this loop passes through

the interior of e7 while otherwise staying in the interior of f2.
Faces f3 and f4 also meet, but in this case the meeting occurs along two edges: e6 and

e8. Thus E(G
∗) will contain two distinct edges joining f ∗

3 and f ∗
4 . Correspondingly, there are

two curves in the drawing of G∗: one passing through the interior of e6, and the other passing
through the interior of e8. In Figure 33(c) these curves are drawn so that they otherwise remain
in the interiors of f3 and f4. This is done to ensure that the resultant drawing of G∗ has no
edge-crossings and so is planar.

Finally, the exterior face f5 meets itself along edge e9, and meets faces f3 and f4 along e4
and e5, respectively. Thus f

∗
5 f

∗
5 , f

∗
3 f

∗
5 , and f

∗
4 f

∗
5 are edges in E(G∗), and Figure 33(c) depicts

the images of these dual edges as curves passing through the interiors of the images of e9, e4,
and e5, respectively. ■

The dual graph of a map of any graph on the plane is always a planar graph, though we
will not prove this fact. What we will prove is that the chromatic number of a map, when it
exists, is always equal to the vertex chromatic number of the map’s dual graph. In this way
many questions concerning coloring maps become questions about coloring graphs.
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Proposition 12.75. If Me(G) is a map of a graph G on the plane, then χ(Me(G)) = χ(G∗).

Proof. The map Me(G) has a face that meets itself if and only if the dual graph G∗ has a loop,
so that Me(G) is uncolorable if and only if G∗ is uncolorable, and thus χ(Me(G)) is undefined if
and only if χ(G∗) is undefined.

Suppose that Me(G) has no face that meets itself, so that G∗ is loopless and both χ(Me(G))
and χ(G∗) are defined. Let c be a chromatic coloring of Me(G). Since two faces f1 and f2 in
Me(G) meet if and only if vertices f ∗

1 and f ∗
2 in G∗ are adjacent, if each f ∗ ∈ V (G∗) is assigned

the same color as f ∈ Fe(G), then a proper vertex χ(Me(G))-coloring of G∗ results, and we find
that χ(G∗) ≤ χ(Me(G)). On the other hand, if c is a chromatic coloring of G∗, then assigning
each f ∈ Fe(G) the same color as f ∗ ∈ V (G∗) yields a proper map χ(G∗)-coloring of Me(G),
and so χ(Me(G)) ≤ χ(G∗). Therefore χ(Me(G)) = χ(G∗). ■

Example 12.76. Let G be the graph with planar drawing e(G) shown in Figure 34(a). The
corresponding map Me(G), with faces labeled f1 through f8, is in Figure 34(b). To determine
the chromatic number of the map, χ(Me(G)), we pass to the dual graph G∗ in Figure 34(c) and
endeavor to ascertain χ(G∗). The set of dual vertices is V (G∗) = {f ∗

k : 1 ≤ k ≤ 8}, and, defining
E4 = {f ∗

4 f
∗
k : k = 1, 2, 3, 5, 6, 7} and E8 = {f ∗

8 f
∗
k : k = 1, 2, 3, 5, 7}, the set of dual edges is

E(G∗) = E4 ∪ E8 ∪ {f ∗
1 f

∗
2 , f

∗
1 f

∗
2 , f

∗
1 f

∗
2 , f

∗
1 f

∗
2 , f

∗
1 f

∗
2 , f

∗
1 f

∗
2}.

The largest independent sets of vertices in G∗ are {f ∗
1 , f

∗
3 , f

∗
6} and {f ∗

2 , f
∗
5 , f

∗
7}. (We observe

that the vertices in G∗ with the two greatest degrees, f ∗
4 and f ∗

8 , are in neither of these sets.)
Hence α(G∗) = 3, and by Proposition 12.54 we have

χ(G∗) ≥
⌈
|V (G∗)|
α(G∗)

⌉
=

⌈
8

3

⌉
= 3.

To show that χ(G∗) = 3, we need only find a proper vertex 3-coloring of G∗. Define the vertex
3-coloring c : V (G) → {1, 2, 3} as follows: c(f ∗

1 ) = 1, c(f ∗
2 ) = 2, c(f ∗

3 ) = 1, c(f ∗
4 ) = 3, c(f ∗

5 ) = 2,

(a)

f8f2

f3

f4

f1

f5

f6

f7

(b)

f ∗
1

f ∗
2 f ∗

3

f ∗
7

f ∗
6f ∗

5

f ∗
4

f ∗
8

(c)

Figure 34.
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Figure 35.

c(f ∗
6 ) = 1, c(f ∗

7 ) = 2, c(f ∗
8 ) = 3, shown in Figure 35(a). That this vertex 3-coloring is proper

is evident by inspection, which establishes that χ(G∗) = 3, and therefore χ(Me(G)) = 3 by
Proposition 12.75. From the 3-coloring of G∗ we readily obtain a proper map 3-coloring of
Me(G), illustrated in Figure 35(b).

We make one last remark. In Figure 34(c) it can be seen that the subgraph G∗ − f ∗
8 is the

even wheel W6, and since χ(W6) = 3 by Proposition 12.61, it follows by Proposition 12.49 that
χ(G∗) ≥ 3, as we had determined above by other means. ■

The objective of much of the remainder of this section will be to prove the five-color theorem,
which states that the chromatic number of any simple planar graph is at most 5. Since the
theorem does not require that a simple planar graph be connected, we need the following
proposition in order to construct a technically airtight proof.

Proposition 12.77. If G1, . . . , Gk are the connected components of a simple graph G, then
χ(G) = max{χ(Gi) : 1 ≤ i ≤ k}.

Proof. Suppose G1, . . . , Gk are the connected components of a simple graph G, and let Gm be
a component for which χ(Gm) = max{χ(Gi) : 1 ≤ i ≤ k}. Since no edge in G has endpoints
that lie in two different components, a chromatic coloring of each of the components results in a
proper vertex coloring of G, and thus χ(G) ≤ χ(Gm). On the other hand, χ(G) ≥ χ(Gm) by
Proposition 12.49. Therefore χ(G) = χ(Gm). ■

Also required for the proof of the five-color theorem is a result from topology known as the
Jordan curve theorem. The statement of the theorem may seem to be intuitively obvious, but
the proof is surprisingly technical and so is omitted here.

Theorem 12.78 (Jordan Curve Theorem). Any closed curve C in the plane separates the
plane into two disjoint regions each having C as its boundary.

Finally, the proof of the five-color theorem makes use of two graphical constructions known
as an {i, j}-subgraph and a Kempe i-j chain. In the following definition recall that Vi denotes
the color class of a color i (see Definition 12.46).
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Definition 12.79. Let i and j be two colors used in a vertex coloring of a graph G. The
{i, j}-subgraph of G is the subgraph of G induced by Vi ∪ Vj. Any connected component of the
{i, j}-subgraph is called a Kempe i-j chain.

At last we state and prove the five-color theorem, which was first proved by Percy John
Heawood way back in 1890 in the course of picking apart Alfred Kempe’s 1879 “proof” of a
four-color theorem. We shall remark on the four-color theorem at the end of this section.

Theorem 12.80 (Five-Color Theorem). If G is a simple planar graph, then χ(G) ≤ 5.

Proof. If the theorem is true for any connected simple planar graph, then it is true for the
connected components of any simple planar graph that is not connected, whereupon Proposition
12.77 implies it must hold true for the graph as a whole. Also, if the theorem is true for any
chromatically critical simple planar graph, then it is true for any simple planar graph that is
not chromatically critical, since edges and vertices may be removed from such a graph until a
chromatically critical subgraph remains that has the same chromatic number as the original
graph. Therefore, without loss of generality, we assume that G is a chromatically critical
connected simple planar graph. To prove the theorem it is sufficient to demonstrate that G is
vertex 5-colorable.

By Proposition 12.26 there exists some vertex w ∈ V (G) such that dG(w) ≤ 5, while Theorem
12.69 informs us that dG(v) ≥ χ(G) − 1 for all v ∈ V (G). Thus χ(G) ≤ dG(w) + 1 ≤ 6, and
since G is chromatically critical, Proposition 12.68 implies that χ(G− w) = χ(G)− 1 ≤ 5; that
is, G− w is 5-colorable. Now, if c is a proper 5-coloring of G− w, and not all five colors of c
have been assigned to the neighbors of w, then c can be extended to a proper 5-coloring of G
itself and there is nothing left to prove. We assume, therefore, that all five colors in the color
set {1, 2, 3, 4, 5} of c are assigned to the vertices in NG(w), so that dG(w) = 5. Furthermore, we
contrive that the drawing function e and coloring function c be such that the planar drawing
e(G) puts the two neighbors of w colored 1 and 5 in one half-plane, the one colored 3 in the
other half plane, and the two colored 2 and 4 on the line forming the boundary between the
half-planes, as in Figure 36.

Let vk denote the neighbor of w originally assigned the color k. The {2, 4}-subgraph of G
will necessarily contain both v2 and v4. Let K be the Kempe 2-4 chain that contains v2. There
are two cases to consider: either K contains v4 or it does not. We argue that in either case it
will be possible to extend c to a proper 5-coloring of G.

Case 1. Suppose K does not contain v4, as illustrated at left in Figure 37. Then the colors 2
and 4 assigned to the vertices in K may be interchanged, or swapped, to obtain a new proper
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Figure 37. Swapping colors 2 and 4 in the Kempe 2-4 chain K.

5-coloring of G − w in which no neighbor of w is assigned the color 2, and thus w may be
assigned color 2 as at right in Figure 37 so as to obtain a proper 5-coloring of G.

Case 2. Suppose K contains both v2 and v4. Then by Proposition 10.72 there exists a
v2, v4-path in K, as illustrated by the dotted edges at left in Figure 38. This path may be
extended to become a cycle by concatenating it with the path having vertex sequence v4wv2, as
the dotted edges at right in Figure 38 demonstrate. In the planar drawing e(G) the cycle forms
a closed curve that, by the Jordan curve theorem, separates the plane into two disjoint regions.
One of these regions contains the (image of) vertex v3, whilst the other contains the (images of)
vertices v1 and v5. As a result, the Kempe 1-3 chain K ′ containing v1 cannot also contain v3
without the drawing e(G) necessarily featuring an edge-crossing, which would contradict the
hypothesis that e(G) is a planar drawing. Thus the colors 1 and 3 assigned to the vertices of K ′

may be interchanged, so that v1 is instead assigned the color 3, whereupon a proper 5-coloring
of G may be obtained by assigned w the color 1. ■

As stated earlier, if a map Me(G) on the plane has no face that meets itself, then the dual
graph G∗ will be a simple planar graph. This in turn implies, by dint of the five-color theorem,
that χ(G∗) ≤ 5, and hence χ(Me(G)) ≤ 5 by Proposition 12.75. This leads to a map version of
the five-color theorem.

Theorem 12.81 (Five-Color Map Theorem). Any map of a graph on the plane that has no
face that meets itself may be properly colored using no more than 5 colors.

The five-color theorem is not the final word on the subject of coloring simple planar graphs,
because in 1976 a proof for a four-color theorem was crafted by Kenneth Appel and Wolfgang
Haken which has since held up to scrutiny and been improved upon. The proof was done with the
aid of a supercomputer,17 analyzing nearly 2000 cases, and so was ill-suited for a carbon-based
readership. This generated no small amount of controversy, with some mathematicians not
recognizing the work as a valid proof since it could not be humanly verified. In 1997 a team of
researchers reduced the number of cases by about two-thirds, to 633. We present the theorem
here, but the author must be forgiven for omitting the proof!

Theorem 12.82 (Four-Color Theorem). If G is a simple planar graph, then χ(G) ≤ 4.

17We remark that the supercomputers of the 1970s were several orders of magnitude slower than the average
desktop computer of the 2020s.
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Figure 38. Forming a cycle in a Kempe 2-4 chain by extending a path.

As with the five-color theorem, there is an analog that applies to the coloring of maps rather
than vertices. It follows from the four-color theorem and Proposition 12.75.

Theorem 12.83 (Four-Color Map Theorem). Any map of a graph on the plane that has no
face that meets itself may be properly colored using no more than 4 colors.


