Math 121 Sequence of Topics From Discrete Mathematics and its Applications, 8th Edition, by Rosen		
§	Topic	Assignment
1.1	Propositional Logic	$1,3,5,7,11,13,17,19,25,29,33,35,39,41$
1.2	Applications of Propositional Logic	3, 7, 9, 11, 21
1.3	Propositional Equivalences	1, 5-15 odd, 21, 27, 31, 35, 50, 51, 52, 53
1.4	Predicates \& Quantifiers	$1,5,7,9,11,13,15,19,25,29,33,35,39$
1.5	Nested Quantifiers	$\begin{aligned} & 1,3,5,9,11,15,17,19,23,25,27,31,37,39, \\ & 41 \end{aligned}$
1.6	Rules of Inference	1, 3, 5, 7, 15, 19
1.7	Introduction to Proofs	$1,3,5,9,11,13,15,17,21,29,33,35$
1.8	Proof Methods and Strategy	$3,5,9,11,13,15,21,31,33,37$
2.1	Sets	$\begin{aligned} & 1,3,7,9,11,13,19,21,23,27,28,29,33,35 \\ & 41,43,45 \end{aligned}$
2.2	Set Operations	$3,5,7,9,15 \mathrm{a}, 17,19 \mathrm{a}, 21,25,33,41,53,55,57$
2.3	Functions	$1,3,5,7,9,13,15,23,25,27 \mathrm{a}, 31,33,41,42 \text {, }$ $45,47,53,71,73 \mathrm{abc}$
2.4	Sequences \& Summations	1, 3, 9, 13cegh, 15abd, 17aceg, 29, 31, 33, 45, 46
2.6	Matrices	$1,2,3,4,7,9,11,13,14,15$
4.1	Divisibility \& Modular Arithmetic	$\begin{aligned} & 2,3,5,7,9,13 \mathrm{bdfh}, 15,17,21,22,27,29 \mathrm{abc}, \\ & 31,32,35 \end{aligned}$
4.2	Integer Representations \& Algorithms	$1,3,5,6,7,9,10,11,17,19,21,23,24,31$
4.3	Primes \& Greatest Common Divisors	$1,3,5,15,17,25,27,29,33$ (use the approach of Example 14 if preferred)
5.1	Mathematical Induction	$5,7,9,11,15,21,23,25,31,35,39,43,57,59$
5.2	Strong Induction \& Well-Ordering	$3,5,9,12,13+$ supplement on next page
6.1	The Basics of Counting	$3,7,9,11,13,15,19-37$ odd, 41, 51, 53, 57, 75
6.2	The Pigeonhole Principle	1, 3, 5, 7, 9, 15, 17, 19, 35
6.3	Permutations \& Combinations	3, 5ace, 7, 11, 15, 17, 19, 21, 25, 29, 35, 37, 41
7.1	An Introduction to Discrete Probability	1-27 odd, 35, 37
8.5	Inclusion-Exclusion	1-19 odd, 23
9.1	Relations and Their Properties	1, 3, 7, 9, 27, 29, 35, 37, 39, 43, 44, 47, 53, 57
9.3	Representing Relations	$1,3,7,9,11,13,14,15,19,21,23,25,27$
9.5	Equivalence Relations	$3,7,9,15,17,21,23,25,29,35,41,45,55,57$
10.1	Graphs \& Graph Models	3, 5, 7, 9, 11, 13
10.2	Special Types of Graphs	$\begin{aligned} & 1-11 \text { odd, } 18,21,23,25,33,35,37,39,45,61 \text {, } \\ & 63,71 \end{aligned}$
10.3	Representing Graphs \& Graph Isomorphism	1-29 odd, 33, 39-49 odd, 63, 71
10.4	Connectivity	
10.5	Euler \& Hamilton Paths	

§5.2 Supplementary Exercises

1 Use strong induction to prove that any integer greater than 1 is divisible by a prime number.

2 The Lucas sequence $\left(\ell_{n}\right)$ is defined as follows: $\ell_{1}=1, \ell_{2}=3$, and $\ell_{n}=\ell_{n-1}+\ell_{n-2}$. Prove that $\ell_{n} \leq\left(\frac{7}{4}\right)^{n}$ for all $n \geq 1$.

3 For the sequence given for $n \geq 3$ by $a_{n}=a_{n-1}+a_{n-2}+a_{n-3}$, with $a_{0}=a_{1}=a_{2}=1$, prove the following:

3a $\quad a_{n}$ is odd for all $n \geq 0$.
3b $\quad a_{n} \leq 2^{n-1}$ for all $n \geq 1$.
4 For the sequence given for $n \geq 3$ by $b_{n}=b_{n-1}+b_{n-3}$, with $b_{0}=b_{1}=b_{2}=1$, prove the following:
4a $\quad b_{n} \geq 2 b_{n-2}$ for $n \geq 3$.
4b $\quad b_{n} \geq(\sqrt{2})^{n-2}$ for $n \geq 2$. (This will require use of $\# 4$ a.)

