
NAME:

- 1. 10 pts. Write an equation in slope-intercept form for the line through (-2, -7) and parallel to 3x - 4y = 2.
- 2. 10 pts. Write an equation in slope-intercept form for the line through (2, -4) and perpendicular to 8x - 3y = 6.
- 3. 10 pts. Give the domain and range of the relation given by the graph below. Is the relation a function?

- 4. <u>10 pts.</u> Let $f(x) = x^2 + \sqrt[3]{x}$. Find f(-8) and f(c).
- 5. 10 pts. each Find the domain and range of each function.
 - (a) $y = x^5$
 - (b) y = |x| + 25
- 6. <u>5 pts. each</u> Find the domain of each function (not the range).
 - (a) $\alpha(x) = \frac{x+1}{3x-2}$

(b)
$$\beta(x) = \sqrt{9x - 5}$$

(c)
$$\gamma(x) = \sqrt{36 - x^2}$$

- 7. 10 pts. each Refer to the functions α , β , γ in Problem 6. There is no need to simplify any of your expressions, but domains must be explicit.
 - (a) Find $\alpha + \gamma$ and its domain.
 - (b) Find α/β and its domain.
 - (c) Find $\beta \circ \beta$ and its domain.
 - (d) Find $\beta \circ \gamma$ and its domain.
- 8. <u>10 pts.</u> Let $T(x) = \frac{2}{(7-2x)^{10}}$. Find functions f and g such that $f \circ g = T$.
- 9. 10 pts. Show the function $f(x) = 2x^3 1$ is one-to-one.
- 10. 10 pts. Show that g(x) = (x-5)(x+9) is not one-to-one.
- 11. The function $f(x) = \frac{x+1}{x-3}$ is one-to-one.
 - (a) 10 pts. Find the inverse f^{-1} of f.
 - (b) 5 pts. Find the range of f.
 - (c) 5 pts. Find the range of f^{-1} .