Math 120 Exam #3 Summer '10

Name:

- 1. 10 pts. Explain why the relation $x = y^6$ is not a function. Also give the domain and range.
- 2. 10 pts. Let $f(x) = x^2 3x + 1$. Find f(-4) and f(c+2).
- 3. 10 pts. each Find the domain and range of each function.

(a)
$$f(x) = x^2 + 2$$
 for $-3 \le x \le 5$
(b) $g(x) = \sqrt{7 - 3x}$

4. 10 pts. each Let
$$\varphi(x) = \frac{8}{x-4}, \quad \psi(x) = \frac{x+1}{x-2}.$$

- (a) Find $\varphi + \psi$ and φ/ψ .
- (b) Find $Dom(\varphi)$ and $Dom(\psi)$.
- (c) Find $\text{Dom}(\varphi/\psi)$.
- 5. 10 pts. each Let $\alpha(x) = \sqrt{9 x^2}$ and $\beta(x) = \sqrt{x + 8}$.
 - (a) Find $\alpha \circ \beta$ and $\alpha \circ \alpha$.
 - (b) Find $Dom(\alpha)$ and $Dom(\beta)$.
 - (c) Find $Dom(\alpha \circ \beta)$
- 6. <u>10 pts.</u> Let $W = \left[\frac{12}{(x-7)^5}\right]^8$. Find functions f, g and h such that $f \circ g \circ h = W$.
- 7. 10 pts. Show the function $z(x) = x^2 + 4x 21$ is *not* one-to-one.
- 8. 15 pts. each Each function f below is one-to-one. Find the inverse f^{-1} of each function, and state the domain and range of both f and f^{-1} .
 - (a) $f(x) = x^3 7$ x - 4
 - (b) $f(x) = \frac{x-4}{x+5}$

- 9. 10 pts. Use synthetic division to perform the division: $\frac{x^5 + 3x^4 + 2x^3 + 2x^2 + 3x + 1}{x+2}$
- 10. Consider the polynomial function f defined by $f(x) = 8x^4 14x^3 29x^2 4x + 3.$
 - (a) <u>5 pts.</u> Applying the Rational Zeros Theorem, list the possible rational zeros of the function.
 - (b) 10 pts. Find all rational zeros of the function f.
 - (c) 5 pts. Fully factor the polynomial f(x).
- 11. 10 pts. Find a polynomial function f of degree 3 with -2, 1, and 4 as zeros, and f(2) = 16
- 12. 10 pts. Find a polynomial function of least degree with real coefficients and having 3 and 2 + i as zeros.