1. 10 pts. Find the exact distance and midpoint between the points $(-2,5)$ and $(8,-1)$.
2. 15 pts. Complete the square and write the equation $x^{2}+10 x+y^{2}-4 y-20=0$ in the standard form (or center-radius form) for a circle. What is the center and radius of the circle?
3. 15 pts . Find the vertex of the parabola given by $f(x)=x^{2}-2 x-15$. In interval notation, what is the domain and range of the function?
4. 15 pts . You have 80 meters of fencing to enclose a rectangular region. Find the dimensions of the rectangle that maximize the enclosed area. What is the maximum area?
5. 10 pts. Divide using long division: $\left(x^{4}+2 x^{3}-9 x-16\right) \div\left(x^{2}-2 x+1\right)$.
6. 10 pts . Find a 3rd-degree polynomial function f having real coefficients, zeros -3 and $2+i$, and such that $f(1)=10$.
7. 15 pts . Consider the equation

$$
x^{4}-3 x^{3}-20 x^{2}-24 x-8=0
$$

List all the possible rational roots. Use synthetic division to test the possible rational roots and find actual roots. Then find all solutions to the equation, real or complex.
8. 20 pts . Use the 7 -step procedure used in homework to sketch a graph of the rational function

$$
R(x)=\frac{x^{3}+1}{x^{2}+2 x} .
$$

The steps are: (1) Domain; (2) Symmetry; (3) Intercepts; (4) Vertical asymptotes and holes; (5) Horizontal/slant asymptote; (6) Plot additional points as necessary; (7) Graph.
9. 10 pts. each Solve each inequality, showing use of test values and the Intermediate Value Theorem. Put answers in interval notation.
(a) $x^{3}+x^{2}+4 x+4>0$
(b) $\frac{x-2}{x+2} \leq 2$

