1. 10 pts. Find the zeros of $f(x)=-8 x(x-19)^{9}(x+17)^{4}$, and state the multiplicity of each.
2. 10 pts. Use the Intermediate Value Theorem to determine whether the function

$$
f(x)=x^{4}-3 x^{2}+x-1
$$

has a real zero between -3 and 1 .
3. 10 pts . Use long division to find the quotient $Q(x)$ and remainder $R(x)$ when $P(x)=x^{4}-2 x^{2}+3$ is divided by $d(x)=x+2$. Express $P(x)$ in the form $d(x) \cdot Q(x)+R(x)$.
4. 10 pts. Use synthetic division to find the quotient and remainder:

$$
\left(4 x^{5}-2 x^{2}-5\right) \div(x+1)
$$

5. 15 pts . Factor the polynomial

$$
f(x)=x^{4}-7 x^{3}+9 x^{2}+27 x-54,
$$

then solve the equation $f(x)=0$.
6. 10 pts. Find a polynomial of degree 4 with 0 as a zero of multiplicity 1,3 as a zero of multiplicity 2 , and -2 as a zero of multiplicity 1 .
7. 10 pts. Find a polynomial function of lowest degree with rational coefficients that has $2-i$ and -1 as some of its zeros.
8. 15 pts . Find all the zeros of

$$
f(x)=2 x^{3}+7 x^{2}+2 x-8
$$

and factor $f(x)$ into linear factors.
9. 20 pts . Sketch a graph of the rational function

$$
G(x)=\frac{x^{2}+3 x}{2 x^{3}-5 x^{2}-3 x} .
$$

To do this, first find the domain of G, as well as all intercepts and asymptotes.
10. 10 pts. each Solve each inequality, and state the solution set in interval notation.
(a) $x^{2}+4 x+7>5 x+9$
(b) $x^{3}+x \leq 6-4 x^{2}$
(c) $\frac{x}{x-2} \geq-1$

