Math 120 Spring 2017 Exam 1

NAME:

- 1. 10 pts. each Let L be the line given by 3y + 2x = -6.
 - (a) Find the intercepts of L.
 - (b) Graph L in the Cartesian coordinate system, labeling all points as well as the axes.
- 2. 10 pts. Find the exact distance between the points $\left(-\frac{11}{3},-\frac{1}{2}\right)$ and $\left(\frac{1}{3},\frac{5}{2}\right)$, simplifying the radical if possible.
- 3. 10 pts. Find the center and radius of the circle given by

$$(x+1)^2 + (y-2)^2 = 64.$$

- 4. 10 pts. Given that $f(x) = 3 4x^2$, find f(-1), f(-x) and f(1-t).
- 5. 10 pts. each Find the domain of the function using interval notation.

(a)
$$f(x) = \frac{2x-1}{4-x}$$

(b) $g(x) = \frac{15}{x^2 - 2x - 15}$
(c) $h(x) = \sqrt{2-3x} + 9$

6. 10 pts. Find the domain and range of the function having the graph below.

7. 10 pts. Find the slope of the line containing the points (16, -13) and (-8, -5).

8. 10 pts. Write a slope-intercept equation for a line passing through (5, 6) with slope $-\frac{3}{8}$.

- 9. 15 pts. Joachim's two student loans total \$9000. One loan is at 5% simple interest, and the other is at 6% simple interest. At the end of one year, Joachim owes \$492 in interest. What is the amount of each loan? (Showing work is required, including setting up an algebraic equation.)
- 10. 10 pts. each Give the solution set of each in interval notation.

(a)
$$4x(x-2) < 2(2x-1)(x-3)$$

(b) $-4 \le 6 - 2x < 4$

(c) 3x - 1 < -5 or 3x - 2 > 4

11. 10 pts. each Let $f(x) = \sqrt{x}$ and $g(x) = \sqrt{2-x}$. Find the domain of each in interval notation.

- (a) f and g
- (b) f g
- (c) ff
- (d) f/g
- 12. 10 pts. each Let $f(x) = 1 x^2$ and $g(x) = \sqrt{x^2 36}$.
 - (a) Find $(f \circ g)(x)$ and $(g \circ f)(x)$.
 - (b) Find the domain of $f \circ g$ in interval notation.
 - (c) Find the domain of $g \circ f$ in interval notation.
- 13. 10 pts. Given

$$h(x) = \frac{1}{\sqrt[3]{3x+7}},$$

find functions f and g (neither being the identity function) such that $(f \circ g)(x) = h(x)$.