1. 10 pts . Write an equation in slope-intercept form for the line through $(-2,-7)$ and parallel to $3 x-4 y=2$.
2. 10 pts . Write an equation in slope-intercept form for the line through $(2,-4)$ and perpendicular to $8 x-3 y=6$.
3. 10 pts . Give the domain and range of the relation given by the graph below. Is the relation a function?

4. 10 pts. Let $f(x)=x^{2}+\sqrt[3]{x}$. Find $f(-8)$ and
$f(c)$.
5. 10 pts . each Find the domain and range of each function.
(a) $y=x^{5}$
(b) $y=|x|+25$
6. 5 pts. each Find the domain of each function (not the range).
(a) $\alpha(x)=\frac{x+1}{3 x-2}$
(b) $\beta(x)=\sqrt{9 x-5}$
(c) $\gamma(x)=\sqrt{36-x^{2}}$
7. 10 pts. each Refer to the functions α, β, γ in Problem 6. There is no need to simplify any of your expressions, but domains must be explicit.
(a) Find $\alpha+\gamma$ and its domain.
(b) Find α / β and its domain.
(c) Find $\beta \circ \beta$ and its domain.
(d) Find $\beta \circ \gamma$ and its domain.
8. 10 pts . Let $T(x)=\frac{2}{(7-2 x)^{10}}$. Find functions f and g such that $f \circ g=T$.
9. 10 pts. Show the function $f(x)=2 x^{3}-1$ is one-to-one.
10. 10 pts. Show that $g(x)=(x-5)(x+9)$ is not one-to-one.
11. The function $f(x)=\frac{x+1}{x-3}$ is one-to-one.
(a) 10 pts . Find the inverse f^{-1} of f.
(b) 5 pts. Find the range of f.
(c) 5 pts . Find the range of f^{-1}.
