Math 120 Exam #4 Spring '09		Show all work (and answers) on the blank paper provided. Write nothing on this paper other than your name. Name:
1	10	 1) For the quadratic function f(x) = 4x² - 4x + 3 give the vertex form, the vertex, the axis of symmetry, the domain, and the range. 2) The polynomial function f(x) = x⁴ + 10x³ + 27x² + 10x + 26 has zero i. Find all other zeros. 3) For f(x) = 2x³ - 9x² - 6x + 5, list all possible rational zeros, find all rational zeros, and factor f(x) into linear factors. 4) Find a polynomial function f of degree 3 with real coefficients such that -2, 1, and 4 are zeros and f(2) = 16.
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	5) Find a polynomial function f of least degree having only real coefficients and the zeros $2-i$ and 5.
8a	10	6) Find the future value if \$32,000 is invested at 6.6% compounded quarterly for 12 years. (Use
8b	10	the formula $A=P(1+r/m)^{mt}$). 7) Rewrite $10\log_5 a - 7\log_5 c^5$ as a single logarithm with coefficient 1. 8) Solve each equation. For each solution that is irrational round to the nearest thousandth. a. $2^{6-3x}=8^{x+1}$ b. $(\sqrt[3]{5})^{-x}=(0.2)^{x+2}$ c. $x=\log_6\frac{1}{216}$ d. $\frac{2}{3}=\log_x\sqrt[3]{16}$ e. $1.2(0.7)^x=0.6$ f. $8^{2x+1}=10^{1-x}$
8c	10	
8d	10	
8e	10	
8f	10	
8g	10	
8h	10	g. $\ln x + \ln(3x - 13) = 1$
9	10	h. $\log(11x+9)=3+\log(x+3)$ 9) Carbon-14 is a radioactive isotope that decays according to the model $A(t)=A_0e^{-0.0001216t}$. If the pigment from a cave painting contains 6.7% of the normal amount of carbon-14, how old is the painting?
10	10	
11	10	10) Find the doubling time of an investment earning 3.7% interest if interest is compounded continuously.
total	180	11) If 30 grams of a radioactive isotope are present initially and 12 years later 28.7 grams remain, how much of the substance will be present after a century?
curve		
%		