1a We have

 $5x^2 - 3x - 2 = 0 \implies (5x + 2)(x - 1) = 0 \implies 5x + 2 = 0$ or x - 1 = 0, so the solution set is $\{1, -2/5\}$

1b We have

 $x^{2} - 3x = 6 \quad \Rightarrow \quad x^{2} - 3x + \frac{9}{4} = 6 + \frac{9}{4} \quad \Rightarrow \quad \left(x - \frac{3}{2}\right)^{2} = \frac{33}{4} \quad \Rightarrow \quad x - \frac{3}{2} = \pm \frac{\sqrt{33}}{2} \quad \Rightarrow \quad x = \frac{3}{2} \pm \frac{\sqrt{33}}{2},$ and so the solution set is $\left\{\frac{3}{2} - \frac{\sqrt{33}}{2}, \frac{3}{2} + \frac{\sqrt{33}}{2}\right\}.$

2 If w is the width of the metal sheet, then the length of the sheet is w + 10. However, the box has width w - 4 and length (w + 10) - 4 = w + 6, and the height must be 2. The volume V of the box is computed as V = 2(w - 4)(w + 6), but we're also given that V = 832. This gives us an equation: 2(w - 4)(w + 6) = 832. Hence $w^2 + 2w - 440 = 0$, which leads to (w + 22)(w - 20) = 0 and so w = -22, 20. Clearly the width of the original sheet can't be -22 cm, which leaves it to be 20 cm. Dimensions of sheet are 20 cm \times 30 cm.

3 Let w be the width, so the length is w + 6. By the Pythagorean Theorem the length of the diagonal is $\sqrt{w^2 + (w+6)^2}$, which is given to be 174, so that

$$w^{2} + (w+6)^{2} = 174^{2} \Rightarrow w^{2} + 6w - 15,120 = 0 \Rightarrow (w-120)(w-126) = 0.$$

Thus the width is 120, and then the length is 126. Dimensions are 126 m \times 120 m.

		Rate of Work	Time Worked	Fraction of Job Done
Т	laps	$\frac{1}{6}$	t	$\frac{t}{6}$
D	Drain	$-\frac{1}{10}$	t	$-\frac{t}{10}$

Let t be the time it would take to complete the job of filling the sink. We get

$$\frac{t}{6} - \frac{t}{10} = 1 \implies 5t - 3t = 30 \implies 2t = 30 \implies t = 15 \text{ minutes.}$$

Get your head screwed on straight, Harry!

5a We have

4

$$x(x+2)\left(\frac{x}{x+2} + \frac{1}{x} + 3\right) = x(x+2) \cdot \frac{2}{x(x+2)} \quad \Rightarrow \quad x^2 + (x+2) + 3x(x+2) = 2 \quad \Rightarrow \quad 4x^2 + 7x = 0,$$

giving x(4x+7) = 0, and finally $x = 0, -\frac{7}{4}$. However, 0 is an extraneous solution, so the solution set is $\left\{-\frac{7}{4}\right\}$.

5b Solving,

$$\sqrt{2x} = x - 4 \Rightarrow 2x = (x - 4)^2 \Rightarrow x^2 - 10x + 16 = 0 \Rightarrow (x - 8)(x - 2) = 0,$$

and so x = 2 or x = 8. But 2 is extraneous (it gives us 2 = -2 in the original equation), so solution set is $\{8\}$.

5c We have

$$\sqrt{x} = \sqrt{x+3} - 1 \quad \Rightarrow \quad x = (\sqrt{x+3} - 1)^2 \quad \Rightarrow \quad x = (x+3) - 2\sqrt{x+3} + 1$$
$$\Rightarrow \quad 2\sqrt{x+3} = 4 \quad \Rightarrow \quad 4(x+3) = 16 \quad \Rightarrow \quad x = 1.$$

Solution set is $\{1\}$.

5d We have

$$3(r^2)^2 + 10r^2 - 25 = 0 \implies (r^2 + 5)(3r^2 - 5) = 0 \implies r^2 = -5 \quad \text{or} \quad r^2 = \frac{5}{3},$$

so $r = \pm i\sqrt{5}$ or $r = \pm \sqrt{5/3}$. Solution set is $\left\{\pm i\sqrt{5}, \pm \sqrt{5/3}\right\}$.

5e Solving

$$|18 - 4y| = 15 \implies 18 - 4y = \pm 15 \implies y = \frac{-18 \pm 15}{-4}$$

so the solution set is $\left\{\frac{3}{4}, \frac{33}{4}\right\}$.

6a Solving,

$$6x - (2x + 13) \ge 3x - 5 \implies 4x - 13 \ge 3x - 5 \implies x \ge 8,$$

so solution set is $[8, \infty)$.

6b
$$-18 < x - 4 < 12 \implies -14 < x < 16$$
, so solution set is $(-14, 16)$.

(

6c We get $x^2 + 5x + 7 < 0$, which is not directly factorable. Consider a completing the square procedure:

$$x^{2} + 5x + 7 = \left(x^{2} + 5x + \frac{25}{4}\right) + 7 - \frac{25}{4} = \left(x + \frac{5}{2}\right)^{2} + \frac{3}{4}.$$

Thus $x^2 + 5x + 7 < 0$ is equivalent to

$$x + \frac{5}{2}\Big)^2 + \frac{3}{4} < 0,$$

which has no solution. Solution set is therefore \emptyset .

6d There are four cases:

Case 1:	$t+5 \ge 0$	and	$3t - 4 \ge 0$	and	$t+2 \ge 0.$
Case 2:	$t+5 \ge 0$	and	$3t - 4 \le 0$	and	$t+2 \le 0.$
Case 3:	$t+5 \le 0$	and	$3t - 4 \ge 0$	and	$t+2 \le 0.$
Case 4:	$t+5 \le 0$	and	$3t - 4 \le 0$	and	$t+2 \ge 0.$

Solving we have

Case 1:
$$t \ge -5$$
 and $t \ge 4/3$ and $t \ge -2$.

Case 2:	$t \ge -5$	and	$t \le 4/3$	and	$t \leq -2.$
Case 3:	$t \leq -5$	and	$t \ge 4/3$	and	$t \leq -2.$
Case 4:	$t \leq -5$	and	$t \le 4/3$	and	$t \ge -2.$

To satisfy the conditions of Case 1 we need $t \ge 4/3$, and to satisfy the conditions of Case 2 we need $-5 \le t \le -2$. Case 3 is impossible to realize, since we can never have $t \le -5$ and $t \ge 4/3$ simultaneously. Also Case 4 is impossible since we can never have $t \le -5$ and $t \ge -2$ simultaneously. So we must have either $t \ge 4/3$ or $-5 \le t \le -2$, giving $[-5, -2] \cup [4/3, \infty)$ for the solution set.

6e First some manipulation is in order:

$$\frac{4}{2-x} \ge \frac{3}{1-x} \quad \Rightarrow \quad \frac{4}{2-x} - \frac{3}{1-x} \ge 0 \quad \Rightarrow \quad -\frac{x+2}{(2-x)(1-x)} \ge 0,$$

or equivalently, multiplying both sides by -1 and noting that (2-x)(1-x) = (x-2)(x-1),

$$\frac{x+2}{(x-2)(x-1)} \le 0.$$

Noting that we cannot have x - 2 = 0 or x - 1 = 0, there are four cases:

Case 1: $x + 2 \le 0$ and x - 2 < 0 and x - 1 < 0. Case 2: $x + 2 \le 0$ and x - 2 > 0 and x - 1 > 0. Case 3: $x + 2 \ge 0$ and x - 2 < 0 and x - 1 > 0. Case 4: $x + 2 \ge 0$ and x - 2 < 0 and x - 1 > 0.

Solving, we have

Case 1:
$$x \leq -2$$
 and $x < 2$ and $x < 1$.
Case 2: $x \leq -2$ and $x > 2$ and $x > 1$.
Case 3: $x \geq -2$ and $x < 2$ and $x > 1$.
Case 4: $x \geq -2$ and $x < 2$ and $x < 1$.

Case 1 gives $x \leq -2$, and Case 3 gives 1 < x < 2. The other cases are impossible. Solution set: $(-\infty, -2] \cup (1, 2)$.

6f Solving,

$$\begin{split} |8x-3|<4 \quad \Rightarrow \quad -4<8x-3<4 \quad \Rightarrow \quad -1<8x<7 \quad \Rightarrow \quad -\frac{1}{8}< x<\frac{7}{8}. \end{split}$$
 Solution set: $\left(-\frac{1}{8},\frac{7}{8}\right).$

7 By the distance formula: $\sqrt{(-6-8)^2 + (-5-12)^2} = \sqrt{14^2 + 17^2} = \sqrt{485}$.

8 Using the completing the square technique gives

 $(x^2 + 8x + 16) + (y^2 - 6y + 9) = -16 + 16 + 9 \implies (x+4)^2 + (y-3)^2 = 3^2,$ which is a circle with center at (-4, 3) and radius 3.