1a $D_{f}=\{x \mid 19-2 x>0\}=\left(-\infty, \frac{19}{2}\right)$.
1b $D_{f}=\left\{x \left\lvert\, \frac{x+5}{x^{2}+10}>0\right.\right\}=\{x \mid x+5>0\}=(-5, \infty)$.
$2 \log \frac{x\left(x^{2}-1\right)}{7(x+1)}=\log \frac{x(x-1)}{7}$.

3a Get $e^{x+1}=e^{-1}$, which implies $x+1=-1$, and so $x=-2$.

3b Letting $u=e^{2 x}$ is an option, but not necessary. Factor: $\left(e^{2 x}-6\right)\left(e^{2 x}+3\right)=0$. So either $e^{2 x}=6$ or $e^{2 x}=-3$. There is no solution to $e^{2 x}=-3$. From $e^{2 x}=6$ we get $2 x=\ln 6$, or $x=\frac{\ln 6}{2}$.

3c Write $\ln \sqrt{x+4}=1$, which is equivalent to $\sqrt{x+4}=e$, and hence $x=e^{2}-4$.

3d Consolidate to get $\log _{9}(x-5)(x+3)=1$, which is equivalent to $9^{1}=(x-5)(x+3)$, and so $x^{2}-2 x-24=0$. Solving the quadratic equation yields $x=-4,6$; however, -4 is an extraneous solution for the original logarithmic equation. Solution set: $\{6\}$.

4 For $A(t)=50 e^{-k t}$ we have $\frac{1}{2} \cdot 50=A(25)=50 e^{-25 k}$, so $e^{-25 k}=\frac{1}{2}$, and hence $k=0.02773$. The completed model is now $A(t)=50 e^{-0.02773 t}$, and we find t such that $A(t)=32$. This implies

$$
50 e^{-0.02773 t}=32
$$

or $e^{-0.02773 t}=0.64$. Solving, we get $t \approx 16.1$ years.

5 The model will have the form $A(t)=A_{0} e^{-k t}$. Given is that $A(5730)=\frac{1}{2} A_{0}$. Thus $A_{0} e^{-5730 k}=\frac{1}{2} A_{0}$, which becomes $e^{-5730 k}=\frac{1}{2}$, and hence $k=\frac{\ln 2}{5730} \approx 1.210 \times 10^{-4}$. The model is now $A(t)=A_{0} e^{-0.0001210 t}$.

We now find time t for which $A(t)=0.71 A_{0}$, or $A_{0} e^{-0.0001210 t}=0.71 A_{0}$. Solving, we have $e^{-0.0001210 t}=0.71$, giving $-0.0001210 t=\ln 0.71$, and finally $t \approx 2830$. That is, the artifact was made around 2830 years ago.

6 Solution is $(-6,-2)$.

7 From 2nd equation: $z=y-1$. Substitute $y-1$ for z in the 3 rd equation, so that the 1 st and 3 rd equation give us the system

$$
\left\{\begin{aligned}
x+y & =-4 \\
2 x+4 y & =-18
\end{aligned}\right.
$$

This solves to give $x=1$ and $y=-5$. Then $z=-5-1=-6$, and the solution is $(1,-5,-6)$.

8 Let x, y, and z be the number of pennies, nickels, and dimes, respectively. Then we have $0.01 x+0.05 y+0.10 z=8.40, z=2 x-6$, and $y=z$. This system solves to give $x=30, y=54$, $z=54$.

