1 Distance:
$$\sqrt{(-2-8)^2 + (5-(-1))^2} = \sqrt{100+36} = \sqrt{136} = 2\sqrt{34}$$
. Midpoint: $\left(\frac{-2+8}{2}, \frac{5+(-1)}{2}\right) = (3,2).$

2 Complete the square:

 $(x^2 + 10x + 25) + (y^2 - 4y + 4) = 20 + 25 + 4 \quad \longleftrightarrow \quad (x+5)^2 + (y-2)^2 = 49.$ Center is (-5, 2), radius is 7.

3 With $-\frac{b}{2a} = 1$, vertex is at (1, f(1)) = (1, -16). Domain is $(-\infty, \infty)$ and range is $[-16, \infty)$.

4 Consider a rectangle with length x and width y, so perimeter is 2x + 2y. It must be that 2x + 2y = 80, so that y = 40 - x. Area A of the rectangle is A = xy, or, as a function of x alone, $A(x) = x(40 - x) = -x^2 + 40x$. This is a quadratic function with coefficients a = -1 and b = 40. Since $-\frac{b}{2a} = 20$, the vertex of the parabola is at (20, A(20)) = (20, 400), which is the highest point on the parabola. Thus the area of the rectangle is maximized if x = 20 and y = 20, so that the rectangle is $20 \text{ m} \times 20 \text{ m}$ and has area 400 m^2 .

5 From the long division

$$\begin{array}{r} x^{2} + 4x + 7 \\
 x^{2} - 2x + 1 \end{array} \underbrace{\begin{array}{r} x^{4} + 2x^{3} & -9x - 16 \\
 -x^{4} + 2x^{3} & -x^{2} \\
 \underline{\phantom{x^{3}}} - x^{2} & -9x \\
 \underline{\phantom{x^{3}}} - 4x^{3} + 8x^{2} & -4x \\
 \underline{\phantom{x^{3}}} - 7x^{2} - 13x - 16 \\
 \underline{\phantom{x^{3}}} - 7x^{2} + 14x - 7 \\
 \underline{\phantom{x^{3}}} - 23 \end{array}}$$

we have

$$\frac{x^4 + 2x^3 - 9x - 16}{x^2 - 2x + 1} = x^2 + 4x + 7 + \frac{x - 23}{x^2 - 2x + 1}.$$

6 The model is f(x) = C(x+3)[x-(2+i)][x-(2-i)], where 2-i must also be a zero in order to have real coefficients. Expanding yields $f(x) = C(x^3 - x^2 - 7x + 15)$, so that f(1) = 8C. To satisfy f(1) = 10 we must have 8C = 10, or $C = \frac{5}{4}$. Therefore

$$f(x) = \frac{5}{4}x^3 - \frac{5}{4}x^2 - \frac{35}{4}x + \frac{75}{4}$$

7 Setting $f(x) = x^4 - 3x^3 - 20x^2 - 24x - 8$, the equation is f(x) = 0. Possible rational zeros of f are $\pm 1, \pm 2, \pm 4, \pm 8$. Through trial-and-error we find -1 is a zero of f, so that x + 1 is a

factor of f(x), and with synthetic division we obtain $f(x) \div (x+1) = x^3 - 4x^2 - 16x - 8$. Hence

$$f(x) = (x+1)(x^3 - 4x^2 - 16x - 8).$$

Let $g(x) = x^3 - 4x^2 - 16x - 8$, which has possible rational zeros $\pm 1, \pm 2, \pm 4, \pm 8$. Again we apply trial-and-error, and find that -2 is a zero for g (and hence f) by obtaining a remainder of 0 when dividing g(x) by x + 2. We have $g(x) \div (x + 2) = x^2 - 6x - 4$, and so

$$g(x) = (x+2)(x^2 - 6x - 4).$$

Since f(x) = (x+1)g(x), we now have

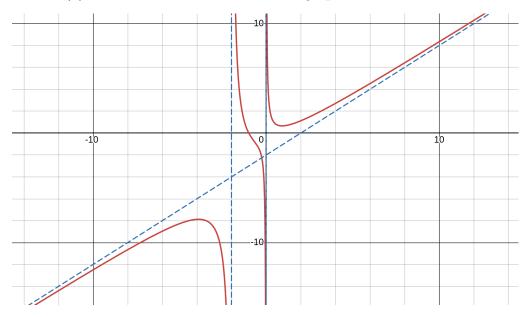
$$f(x) = (x+1)(x+2)(x^2 - 6x - 4).$$

To satisfy f(x) = 0 we may have x = -1, x = -2, or $x^2 - 6x - 4 = 0$. The solutions to the last equation are

$$x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(1)(-4)}}{2(1)} = 3 \pm \sqrt{13},$$

which are two more zeros for f. The solutions to f(x) = 0 are: $\{-2, -1, 3 - \sqrt{13}, 3 + \sqrt{13}\}$.

8 (1) $D_R = \{x \mid x \neq -2, 0\}$; (2) No symmetry; (3) *x*-intercept is -1, no *y*-intercept; (4) vertical asymptotes are x = -2, x = 0; (5) slant asymptote is y = x - 2; (6) It's helpful to get, say, $R(-3) \approx -8.67$ and $R(4) \approx 2.71$ to fully ascertain where the graph lies above the *x*-axis or below it. For (7) the sketch should resemble the graph below.



9a Factor by grouping: $x^2(x+1) + 4(x+1) > 0$ yields $(x+1)(x^2+4) > 0$. This can be solved by the usual method using the Intermediate Value Theorem (IVT); however, we note here that $x^2 + 4 > 0$ holds for any real x, so it's only required that x + 1 > 0 hold to satisfy the inequality. Solution set is $(-1, \infty)$.

9b Get 0 on one side and a single quotient on the other:

$$\frac{x-2}{x+2} - 2 \le 0 \quad \longleftrightarrow \quad -\frac{x+6}{x+2} \le 0 \quad \longleftrightarrow \quad \frac{x+6}{x+2} \ge 0.$$

Let $f(x) = \frac{x+6}{x+2}$, so inequality is $f(x) \ge 0$. Now, f(x) = 0 only if x = -6, and f(x) is undefined only if x = -2. Use -6 and -2 to partition the real line into subintervals $(-\infty, -6)$, (-6, -2), and $(-2, \infty)$. Pick a test value in each subinterval to find where f(x) > 0 using the IVT. Knowing where f(x) > 0 and where f(x) = 0 solves $f(x) \ge 0$. Solution set is $(-\infty, -6] \cup (-2, \infty)$.