1 Distance: $\sqrt{(-2-8)^{2}+(5-(-1))^{2}}=\sqrt{100+36}=\sqrt{136}=2 \sqrt{34}$. Midpoint:

$$
\left(\frac{-2+8}{2}, \frac{5+(-1)}{2}\right)=(3,2)
$$

2 Complete the square:

$$
\left(x^{2}+10 x+25\right)+\left(y^{2}-4 y+4\right)=20+25+4 \quad \hookrightarrow \quad(x+5)^{2}+(y-2)^{2}=49 .
$$

Center is $(-5,2)$, radius is 7 .

3 With $-\frac{b}{2 a}=1$, vertex is at $(1, f(1))=(1,-16)$. Domain is $(-\infty, \infty)$ and range is $[-16, \infty)$.

4 Consider a rectangle with length x and width y, so perimeter is $2 x+2 y$. It must be that $2 x+2 y=80$, so that $y=40-x$. Area A of the rectangle is $A=x y$, or, as a function of x alone, $A(x)=x(40-x)=-x^{2}+40 x$. This is a quadratic function with coefficients $a=-1$ and $b=40$. Since $-\frac{b}{2 a}=20$, the vertex of the parabola is at $(20, A(20))=(20,400)$, which is the highest point on the parabola. Thus the area of the rectangle is maximized if $x=20$ and $y=20$, so that the rectangle is $20 \mathrm{~m} \times 20 \mathrm{~m}$ and has area $400 \mathrm{~m}^{2}$.

5 From the long division

$$
\begin{aligned}
& \left.x^{2}-2 x+1\right) \begin{array}{l}
\\
\cline { 2 - 2 }+2 x^{3} \\
x^{4}+4 x+7 \\
\hline
\end{array} \\
& \frac{-x^{4}+2 x^{3}-x^{2}}{4 x^{3}-x^{2}}-9 x \\
& \frac{-4 x^{3}+8 x^{2}-4 x}{7 x^{2}-13 x}-16 \\
& \frac{-7 x^{2}+14 x-7}{x-23}
\end{aligned}
$$

we have

$$
\frac{x^{4}+2 x^{3}-9 x-16}{x^{2}-2 x+1}=x^{2}+4 x+7+\frac{x-23}{x^{2}-2 x+1} .
$$

6 The model is $f(x)=C(x+3)[x-(2+i)][x-(2-i)]$, where $2-i$ must also be a zero in order to have real coefficients. Expanding yields $f(x)=C\left(x^{3}-x^{2}-7 x+15\right)$, so that $f(1)=8 C$. To satisfy $f(1)=10$ we must have $8 C=10$, or $C=\frac{5}{4}$. Therefore

$$
f(x)=\frac{5}{4} x^{3}-\frac{5}{4} x^{2}-\frac{35}{4} x+\frac{75}{4} .
$$

7 Setting $f(x)=x^{4}-3 x^{3}-20 x^{2}-24 x-8$, the equation is $f(x)=0$. Possible rational zeros of f are $\pm 1, \pm 2, \pm 4, \pm 8$. Through trial-and-error we find -1 is a zero of f, so that $x+1$ is a
factor of $f(x)$, and with synthetic division we obtain $f(x) \div(x+1)=x^{3}-4 x^{2}-16 x-8$. Hence

$$
f(x)=(x+1)\left(x^{3}-4 x^{2}-16 x-8\right)
$$

Let $g(x)=x^{3}-4 x^{2}-16 x-8$, which has possible rational zeros $\pm 1, \pm 2, \pm 4, \pm 8$. Again we apply trial-and-error, and find that -2 is a zero for g (and hence f) by obtaining a remainder of 0 when dividing $g(x)$ by $x+2$. We have $g(x) \div(x+2)=x^{2}-6 x-4$, and so

$$
g(x)=(x+2)\left(x^{2}-6 x-4\right)
$$

Since $f(x)=(x+1) g(x)$, we now have

$$
f(x)=(x+1)(x+2)\left(x^{2}-6 x-4\right)
$$

To satisfy $f(x)=0$ we may have $x=-1, x=-2$, or $x^{2}-6 x-4=0$. The solutions to the last equation are

$$
x=\frac{-(-6) \pm \sqrt{(-6)^{2}-4(1)(-4)}}{2(1)}=3 \pm \sqrt{13}
$$

which are two more zeros for f. The solutions to $f(x)=0$ are: $\{-2,-1,3-\sqrt{13}, 3+\sqrt{13}\}$.

8 (1) $D_{R}=\{x \mid x \neq-2,0\}$; (2) No symmetry; (3) x-intercept is -1 , no y-intercept; (4) vertical asymptotes are $x=-2, x=0$; (5) slant asymptote is $y=x-2$; (6) It's helpful to get, say, $R(-3) \approx-8.67$ and $R(4) \approx 2.71$ to fully ascertain where the graph lies above the x-axis or below it. For (7) the sketch should resemble the graph below.

9a Factor by grouping: $x^{2}(x+1)+4(x+1)>0$ yields $(x+1)\left(x^{2}+4\right)>0$. This can be solved by the usual method using the Intermediate Value Theorem (IVT); however, we note here that $x^{2}+4>0$ holds for any real x, so it's only required that $x+1>0$ hold to satisfy the inequality. Solution set is $(-1, \infty)$.

9b Get 0 on one side and a single quotient on the other:

$$
\frac{x-2}{x+2}-2 \leq 0 \quad \hookrightarrow \quad-\frac{x+6}{x+2} \leq 0 \quad \hookrightarrow \quad \frac{x+6}{x+2} \geq 0
$$

Let $f(x)=\frac{x+6}{x+2}$, so inequality is $f(x) \geq 0$. Now, $f(x)=0$ only if $x=-6$, and $f(x)$ is undefined only if $x=-2$. Use -6 and -2 to partition the real line into subintervals $(-\infty,-6)$, $(-6,-2)$, and $(-2, \infty)$. Pick a test value in each subinterval to find where $f(x)>0$ using the IVT. Knowing where $f(x)>0$ and where $f(x)=0$ solves $f(x) \geq 0$. Solution set is $(-\infty,-6] \cup(-2, \infty)$.

