Math 120 Exam \#2 Key (Spring 2024)

$1 f(-3)=-\frac{9}{2}, \quad f(-x)=\frac{x^{2}}{1-x}, \quad f(x+1)=\frac{(x+1)^{2}}{x+2}$.

2a $h(-1)$ is undefined, $h(2)$ is undefined, $h(4)=4$.

2b $\quad D_{g}=[-3,-1) \cup[0,2) \cup(2,4], \quad R_{g}=(-1,1] \cup[2,4]$.

3a Symmetric about origin only.
3b $\quad R(-x)=\frac{(-x)^{4}-2(-x)^{2}+3}{(-x)^{3}}=-\frac{x^{4}-2 x^{2}+3}{x^{3}}=-R(x)$, so R is odd.

4a

4b The graph may help: $D_{q}=(-\infty, 2) \cup(2, \infty), R_{q}=(-\infty, 0] \cup(1, \infty)$.

5 Slope is $\frac{8}{11}$, so $y-1=\frac{8}{11}(x+3)$ is the equation, which becomes $y=\frac{8}{11} x+\frac{35}{11}$.

6 Equation is $y-(-3)=\frac{2}{5}(x-4)$, which in slope-intercept form is $y=\frac{2}{5} x-\frac{23}{5}$. The y-intercept is $-\frac{23}{5}$.
$7 y-4 x+1=0$ becomes $y=4 x-1$, so the given line has slope 4 , and hence L has slope $-\frac{1}{4}$. Equation for L is thus $y=-\frac{1}{4} x+2$.
$8 \mathbf{a} \quad D_{f}=(-\infty,-4) \cup(-4,4) \cup(4, \infty)$.

8b $D_{r}=\{x \mid x \neq 0$ and $15 / x \neq 5\}=(-\infty, 0) \cup(0,3) \cup(3, \infty)$.

9a $\quad D_{F}=[3, \infty), D_{G}=\left[-\frac{5}{2}, \infty\right)$.

9b $\quad(F-G)(x)=\sqrt{x-3}-\sqrt{2 x+5}$ with $D_{F-G}=D_{F} \cap D_{G}=[3, \infty)$.

9c $\quad(F / G)(x)=\frac{\sqrt{x-3}}{\sqrt{2 x+5}}$ with $D_{F / G}=[3, \infty)$.

10a $(f \circ g)(x)=f(g(x))=\sqrt{\frac{5}{x-36}}$.

10b $D_{f}=[0, \infty)$ and $D_{g}=\{x \mid x \neq 36\}$, so

$$
\begin{aligned}
D_{f \circ g} & =\left\{x \mid x \in D_{g} \text { and } g(x) \in D_{f}\right\} \\
& =\left\{x \left\lvert\, \frac{5}{x-36} \geq 0\right.\right\} \\
& =\{x \mid x>36\} \\
& =(36, \infty) .
\end{aligned}
$$

11a Set $y=f(x)$, and solve for x :

$$
y=\frac{7-3 x}{9 x+2} \quad \hookrightarrow \quad 9 x y+2 y=7-3 x \quad \hookrightarrow \quad x=\frac{7-2 y}{9 y+3} \quad \hookrightarrow \quad f^{-1}(y)=\frac{7-2 y}{9 y+3} .
$$

11b $\quad R_{f^{-1}}=D_{f}=\left(-\infty,-\frac{2}{9}\right) \cup\left(-\frac{2}{9}, \infty\right)$ and $R_{f}=D_{f^{-1}}=\left(-\infty,-\frac{1}{3}\right) \cup\left(-\frac{1}{3}, \infty\right)$.

