- **1a** Quadrants I, IV.
- **1b** Quadrants II, IV.
- **2** Make a table of values to obtain the graph below.

- **3a** Get 7x 2 = 4x 5, and then x = -1.
- **3b** Multiply by (x+3)(x-2) to get

$$6(x-2) + 20 = 5(x+3) \implies x = 7.$$

Solution set is $\{7\}$.

4 Let x be the number of times the bridge is crossed. With the transponder the cost is 27.50 + 5x, and without it the cost is 7.50x. We find x such that 27.50 + 5x = 7.50x, which solves to give x = 11 bridge crossings.

- 5 Get I(R+r) = E, and so $I = \frac{E}{R+r}$.
- **6a** FOIL yields $18 27i + 4i^2 = 14 27i$.
- **6b** $\frac{4i}{2+i} \cdot \frac{2-i}{2-i} = \frac{8i-4i^2}{4-i^2} = \frac{4+8i}{5} = \frac{4}{5} + \frac{8}{5}i.$
- 7 See the long division work below. Since the remainder is 1, we have $i^{833} = i^1 = i$.

208
4)833
8
$\overline{0}33$
32
1

8a
$$x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(3)(1)}}{2(3)} = \frac{6 \pm 2\sqrt{6}}{6} = \frac{3 \pm \sqrt{6}}{3}.$$

8b $x^2 + 6x = 5 \hookrightarrow x^2 + 6x + 9 = 5 + 9 \hookrightarrow (x+3)^2 = 14 \hookrightarrow x+3 = \pm\sqrt{14}$, and so we obtain $x = -3 \pm \sqrt{14}$.

9 Let x be the width of the lot, so the length is x + 3. Since the area is 180 m², we must have x(x+3) = 180, or $x^2 + 3x - 180 = 0$. Factoring, we get (x+15)(x-12) = 0, which has solutions x = -15, 12. Thus the width must be 12 m and the length 15 m; that is, the lot is $12 \text{ m} \times 15 \text{ m}$.

10a Write $\sqrt{x-4} = 5 - \sqrt{x+1}$. Square: $x-4 = 25 - 10\sqrt{x+1} + (x+1)$. Isolate radical: $\sqrt{x+1} = 3$. Square again: x+1 = 9, and thus x = 8. This solution is valid. Solution set: $\{8\}$.

10b Make the substitution $u = x^{1/4}$ to get $u^2 + 3u - 10 = 0$, and thus either u = -5 or u = 2. That is, $x^{1/4} = -5$ or $x^{1/4} = 2$. Since $x^{1/4} = \sqrt[4]{x} = -5$ is impossible, the only solution obtains from $x^{1/4} = 2$, which yields x = 16. Solution set: {16}.

10c We get $|x-3| = 8 \Rightarrow x-3 = \pm 8 \Rightarrow x = 3 \pm 8$. Solution set: $\{-5, 11\}$.

11a $6x - 9 \ge -4x - 3 \implies 10x \ge 6 \implies x \ge \frac{3}{5}$. Solution set: $\left[\frac{3}{5}, \infty\right)$.

11b Either $\frac{2x+6}{3} > 2$ or $\frac{2x+6}{3} < -2$, so that 2x+6 > 6 or 2x+6 < -6, and finally x > 0 or x < -6. Solution set is $(-\infty, -6) \cup (0, \infty)$.