Math 120 Exam \#1 Key (Spring 2024)

1a Quadrants I, IV.

1b Quadrants II, IV.

2 Make a table of values to obtain the graph below.

3a Get $7 x-2=4 x-5$, and then $x=-1$.
3b Multiply by $(x+3)(x-2)$ to get

$$
6(x-2)+20=5(x+3) \Rightarrow x=7
$$

Solution set is $\{7\}$.

4 Let x be the number of times the bridge is crossed. With the transponder the cost is $27.50+5 x$, and without it the cost is $7.50 x$. We find x such that $27.50+5 x=7.50 x$, which solves to give $x=11$ bridge crossings.

5 Get $I(R+r)=E$, and so $I=\frac{E}{R+r}$.

6a FOIL yields $18-27 i+4 i^{2}=14-27 i$.
6b $\frac{4 i}{2+i} \cdot \frac{2-i}{2-i}=\frac{8 i-4 i^{2}}{4-i^{2}}=\frac{4+8 i}{5}=\frac{4}{5}+\frac{8}{5} i$.
7 See the long division work below. Since the remainder is 1 , we have $i^{833}=i^{1}=i$.

$$
\begin{array}{r}
208 \\
4 \longdiv { 8 3 3 } \\
\frac{8}{0} 33 \\
\frac{32}{1}
\end{array}
$$

$\mathbf{8 a} \quad x=\frac{-(-6) \pm \sqrt{(-6)^{2}-4(3)(1)}}{2(3)}=\frac{6 \pm 2 \sqrt{6}}{6}=\frac{3 \pm \sqrt{6}}{3}$.
$\mathbf{8 b} \quad x^{2}+6 x=5 \hookrightarrow x^{2}+6 x+9=5+9 \hookrightarrow(x+3)^{2}=14 \hookrightarrow x+3= \pm \sqrt{14}$, and so we obtain $x=-3 \pm \sqrt{14}$.

9 Let x be the width of the lot, so the length is $x+3$. Since the area is $180 \mathrm{~m}^{2}$, we must have $x(x+3)=180$, or $x^{2}+3 x-180=0$. Factoring, we get $(x+15)(x-12)=0$, which has solutions $x=-15,12$. Thus the width must be 12 m and the length 15 m ; that is, the lot is $12 \mathrm{~m} \times 15 \mathrm{~m}$.

10a Write $\sqrt{x-4}=5-\sqrt{x+1}$. Square: $x-4=25-10 \sqrt{x+1}+(x+1)$. Isolate radical: $\sqrt{x+1}=3$. Square again: $x+1=9$, and thus $x=8$. This solution is valid. Solution set: $\{8\}$.

10b Make the substitution $u=x^{1 / 4}$ to get $u^{2}+3 u-10=0$, and thus either $u=-5$ or $u=2$. That is, $x^{1 / 4}=-5$ or $x^{1 / 4}=2$. Since $x^{1 / 4}=\sqrt[4]{x}=-5$ is impossible, the only solution obtains from $x^{1 / 4}=2$, which yields $x=16$. Solution set: $\{16\}$.

10c We get $|x-3|=8 \Rightarrow x-3= \pm 8 \Rightarrow x=3 \pm 8$. Solution set: $\{-5,11\}$.
11a $6 x-9 \geq-4 x-3 \Rightarrow 10 x \geq 6 \Rightarrow x \geq \frac{3}{5}$. Solution set: $\left[\frac{3}{5}, \infty\right)$.
11b Either $\frac{2 x+6}{3}>2$ or $\frac{2 x+6}{3}<-2$, so that $2 x+6>6$ or $2 x+6<-6$, and finally $x>0$ or $x<-6$. Solution set is $(-\infty,-6) \cup(0, \infty)$.

