Math 120 Exam \#4 Key (Spring 2023)

1a $D_{f}=\{x \mid 8 x+3>0\}=\left(-\frac{3}{8}, \infty\right)$.

1b $\quad D_{f}=\left\{x \left\lvert\, \frac{2 x-4}{x^{2}-4}>0\right.\right\}=\left\{x \left\lvert\, \frac{2}{x+2}>0\right.\right.$ and $\left.x \neq \pm 2\right\}=(-2,2) \cup(2, \infty)$.
$2 \log \frac{x\left(x^{2}-1\right)}{7(x+1)}=\log \frac{x(x-1)}{7}$.
$3 \log _{b} \sqrt[3]{\frac{25}{16}}=\frac{1}{3} \log _{b}\left(\frac{25}{16}\right)=\frac{2}{3} \log _{b}\left(\frac{5}{4}\right)=\frac{2}{3}\left(\log _{b} 5-2 \log _{b} 2\right)=\frac{2}{3}(\beta-2 \alpha)$.

4a Get $8^{1-2 x}=8^{2(x-4)}$, which implies $1-2 x=2(x-4)$, and so $x=\frac{9}{4}$.

4b Let $u=2^{x}$ to get $u^{2}+u-12=0$, and thus $u=-4$ or $u=3$. Now, $2^{x}=-4$ has no solution, but $2^{x}=3$ gives $x=\frac{\ln 3}{\ln 2}$.

4c Write $\log _{3}(x+6)(x+4)=1$, so $(x+6)(x+4)=3$ and hence $x=-7$, -3 . But $x=-7$ is extraneous. Solution set is $\{-3\}$.

4d $|\ln x|=4$ implies $\ln x= \pm 4$, and hence $x=e^{ \pm 4}$.

5 For $A(t)=A_{0} e^{-k t}$ we have $\frac{1}{2} A_{0}=A(7340)=A_{0} e^{-7340 k}$, so $e^{-7340 k}=\frac{1}{2}$, and hence $k=0.00009443$. The completed model is now $A(t)=A_{0} e^{-0.00009443 t}$, and we find t such that $A(t)=0.01 A_{0}$. This implies

$$
A_{0} e^{-0.00009443 t}=0.01 A_{0}
$$

or $e^{-0.00009443 t}=0.01$. Solving, we get $t \approx 48,768$ years.

6 Growth rate is 0.82%. As for the doubling time, it is given by $(\ln 2) / k=(\ln 2) / 0.0082=84.5$ years.

7 Solution is $(-6,-2)$.

8 Note from the first two equations that $x+y+6 z=3=x+y+3 z$, so $6 z=3 z$, and hence $z=0$. This immediately reduces the system to two variables, and solving yields $x=-1$ and $y=4$. Solution is $(-1,4,0)$.

9 Letting x be the number of rooms with a kitchen, and y the number without a kitchen. We obtain the following system:

$$
\left\{\begin{aligned}
x+y & =200 \\
200 x+160 y & =34,000
\end{aligned}\right.
$$

Solving yields $x=50$ and $y=150$.

