1a $D_f = \{x \mid 8x + 3 > 0\} = (-\frac{3}{8}, \infty).$ 1b $D_f = \{x \mid \frac{2x - 4}{x^2 - 4} > 0\} = \{x \mid \frac{2}{x + 2} > 0 \text{ and } x \neq \pm 2\} = (-2, 2) \cup (2, \infty).$ 2 $\log \frac{x(x^2 - 1)}{7(x + 1)} = \log \frac{x(x - 1)}{7}.$ 3 $\log_b \sqrt[3]{\frac{25}{16}} = \frac{1}{3} \log_b \left(\frac{25}{16}\right) = \frac{2}{3} \log_b \left(\frac{5}{4}\right) = \frac{2}{3} (\log_b 5 - 2\log_b 2) = \frac{2}{3} (\beta - 2\alpha).$

4a Get $8^{1-2x} = 8^{2(x-4)}$, which implies 1 - 2x = 2(x-4), and so $x = \frac{9}{4}$.

4b Let $u = 2^x$ to get $u^2 + u - 12 = 0$, and thus u = -4 or u = 3. Now, $2^x = -4$ has no solution, but $2^x = 3$ gives $x = \frac{\ln 3}{\ln 2}$.

4c Write $\log_3(x+6)(x+4) = 1$, so (x+6)(x+4) = 3 and hence x = -7, -3. But x = -7 is extraneous. Solution set is $\{-3\}$.

4d $|\ln x| = 4$ implies $\ln x = \pm 4$, and hence $x = e^{\pm 4}$.

5 For $A(t) = A_0 e^{-kt}$ we have $\frac{1}{2}A_0 = A(7340) = A_0 e^{-7340k}$, so $e^{-7340k} = \frac{1}{2}$, and hence k = 0.00009443. The completed model is now $A(t) = A_0 e^{-0.00009443t}$, and we find t such that $A(t) = 0.01A_0$. This implies

$$A_0 e^{-0.00009443t} = 0.01 A_0$$

or $e^{-0.00009443t} = 0.01$. Solving, we get $t \approx 48,768$ years.

6 Growth rate is 0.82%. As for the doubling time, it is given by $(\ln 2)/k = (\ln 2)/0.0082 = 84.5$ years.

7 Solution is (-6, -2).

8 Note from the first two equations that x + y + 6z = 3 = x + y + 3z, so 6z = 3z, and hence z = 0. This immediately reduces the system to two variables, and solving yields x = -1 and y = 4. Solution is (-1, 4, 0).

9 Letting x be the number of rooms with a kitchen, and y the number without a kitchen. We obtain the following system:

$$\begin{cases} x + y = 200\\ 200x + 160y = 34,000 \end{cases}$$

Solving yields x = 50 and y = 150.