1 Complete squares to get $(x-2)^2 + (y+1)^2 = 9$. Center is at (2, -1), radius is 3.

2a It's at the midpoint between the given points, so use the midpoint formula to get (4, 5).

2b It's the distance between the center (4, 5) and either of the given points. Use the distance formula to get $r = \sqrt{2}$.

2c With center (4,5) and radius $\sqrt{2}$ the equation is $(x-4)^2 + (y-5)^2 = 2$.

3 With $-\frac{b}{2a} = \frac{5}{4}$, vertex is at $(\frac{5}{4}, f(\frac{5}{4})) = (\frac{5}{4}, -\frac{73}{8})$. The domain is $(-\infty, \infty)$ and the range is $[-\frac{73}{8}, \infty)$.

4 Have $f(x) = a(x-h)^2 + k$ with (h,k) = (-3,-1), so $f(x) = a(x+3)^2 - 1$. Now use the fact that f(-2) = -3 to find that a = -2. Therefore $f(x) = -2(x+3)^2 - 1$.

5 From the long division

$$\begin{array}{r} x^{2} + 4 \\ x^{2} - 2 \end{array} \xrightarrow{x^{4} + 2x^{2} - 5x - 16} \\ - x^{4} + 2x^{2} \\ \hline 4x^{2} - 5x - 16 \\ - 4x^{2} + 8 \\ \hline - 5x - 8 \end{array}$$

we have

$$\frac{x^4 + 2x^3 - 4x^2 - 5x - 6}{x^2 - 2} = x^2 + 4 - \frac{5x + 8}{x^2 - 2}.$$

6 The model is f(x) = C(x-2)[x-(2-3i)][x-(2+3i)], where 2+3i must also be a zero in order to have real coefficients. Expanding yields $f(x) = C(x^3 - 6x^2 + 21x - 26)$, and to satisfy f(1) = -10 we must have C = 1. Therefore

$$f(x) = x^3 - 6x^2 + 21x - 26.$$

7 With $f(x) = x^4 - x^3 + 2x^2 - 4x - 8$, equation is f(x) = 0. Possible rational zeros of f are $\pm 1, \pm 2, \pm 4, \pm 8$. Through trial-and-error we find 2 is a zero of f, so that x - 2 is a factor of f(x), and with synthetic division we obtain $f(x) \div (x - 2) = x^3 + x^2 + 4x + 4$. Now

$$f(x) = (x-2)(x^3 + x^2 + 4x + 4) = (x-2)[x^2(x+1) + 4(x+1)] = (x-2)(x+1)(x^2+4).$$

From this factorization we obtain the zeros of f, which are also the solutions to the given equation: $\{2, -1, 2i, -2i\}$.

8 (1) $D_R = \{x \mid x \neq -2, 3\}$; (2) No symmetry; (3) *x*-intercepts are -1, 4, and *y*-intercept is $R(0) = \frac{2}{3}$; (4) v.a. are x = -2 and x = 3; (5) h.a. is y = 1; (6) It's helpful to get, say, $R(-3) = \frac{7}{3}$ and perhaps $R(5) = \frac{3}{7}$. For (7) the sketch should resemble the graph below.

- **9a** Solution set is $(-4, -\frac{1}{2})$.
- **9b** Solution set is $(-\infty, -2) \cup [6, \infty)$.