$1 f(-3)=26, \quad f(-x)=x^{2}+3 x+8, \quad f(x-1)=x^{2}-5 x+12$.

2a $g(-3)$ is undefined, $g(1)=0, g(4)=4$.

2b $\quad D_{g}=(-3,4], \quad R_{g}=[0,4]$.

3a Symmetric about origin only.

3b Neither.

4a

4b The graph may help: $D_{q}=(-\infty, 2) \cup(2, \infty), R_{q}=(-\infty, 0] \cup(1, \infty)$.

5 Slope is $-\frac{5}{6}$, so $y-(-2)=-\frac{5}{6}(x-(-3))$ is the equation, which becomes $y=-\frac{5}{6} x-\frac{9}{2}$.

6 Equation is $y-(-6)=-\frac{3}{2}(x-2)$, which in slope-intercept form is $y=-\frac{3}{2} x-3$. The y-intercept is -3 .
$7 y-2 x+5=0$ becomes $y=2 x-5$, so the given line has slope 2 , and hence L has slope $-\frac{1}{2}$. Equation for L is thus $y=-\frac{1}{2} x-3$.

8a $\quad D_{f}=(-\infty,-7) \cup(-7,7) \cup(7, \infty)$.

8b $\quad D_{r}=\{x \mid x \neq 0$ and $12 / x \neq-10\}=\left(-\infty,-\frac{6}{5}\right) \cup\left(-\frac{6}{5}, 0\right) \cup(0, \infty)$.

9a $\quad D_{F}=[-8, \infty), D_{G}=(-\infty, 12]$.

9b $\quad(F-G)(x)=\sqrt{x+8}-\sqrt{12-x}$ with $D_{F-G}=D_{F} \cap D_{G}=[-8,12]$.

9c $\quad(F / G)(x)=\frac{\sqrt{x+8}}{\sqrt{12-x}}$ with $D_{F / G}=[-8,12)$.

10a $(f \circ g)(x)=f(g(x))=\sqrt{\frac{5}{x-4}}$.

10b $D_{f}=[0, \infty)$ and $D_{g}=\{x \mid x \neq 4\}$, so

$$
\begin{aligned}
D_{f \circ g} & =\left\{x \mid x \in D_{g} \text { and } g(x) \in D_{f}\right\} \\
& =\left\{x \mid x \neq 4 \text { and } \frac{5}{x-4} \geq 0\right\} \\
& =\{x \mid x>4\}=(4, \infty) .
\end{aligned}
$$

11a Set $y=f(x)$, and solve for x :

$$
y=\frac{6 x+5}{1-2 x} \quad \hookrightarrow \quad y-2 x y=6 x+5 \quad \hookrightarrow \quad x=\frac{y-5}{2 y+6} \quad \hookrightarrow \quad f^{-1}(y)=\frac{y-5}{2 y+6} .
$$

11b $\quad R_{f^{-1}}=D_{f}=\left(-\infty, \frac{1}{2}\right) \cup\left(\frac{1}{2}, \infty\right)$ and $R_{f}=D_{f^{-1}}=(-\infty,-3) \cup(-3, \infty)$.

