Math 120 Exam \#1 Key (Spring 2023)

1a Quadrants II, IV.

1b No quadrant works.

2

3a Get $7 x-2=4 x-5$, and then $x=-1$.

3b Multiply by $(x+3)(x-2)$ to get

$$
6(x-2)-5(x+3)=-20 \Rightarrow x=7
$$

Solution set is $\{7\}$.

4 Let x be the amount invested at 4%, so $\$ 4000-x$ is the amount invested at -3%. Then

$$
0.04 x-0.03(4000-x)=55
$$

which solves to give $x=\$ 2500$. So $\$ 2500$ was invested at 4% and $\$ 1500$ was invested at -3%.

5 After showing some work, you should get $h=\frac{A-2 \ell w}{2 \ell+2 w}$.

6a FOIL procedure gives $25-20 i+4 i^{2}=21-20 i$.
$\mathbf{6 b} \frac{4+i}{2-i} \cdot \frac{2+i}{2+i}=\frac{8+6 i+i^{2}}{4-i^{2}}=\frac{7}{5}+\frac{6}{5} i$.

7 The division 877/4 has remainder 1, and so $i^{877}=i^{1}=i$.

8a Get $(x-6)^{2}=49$, so $x-6= \pm 7$, and finally $x=-1,13$.

8b We get $x^{2}+4 x=-\frac{1}{2}$, then $x^{2}+4 x+4=-\frac{1}{2}+4$, and then $(x+2)^{2}=\frac{7}{2}$. Solutions are $x= \pm \sqrt{\frac{7}{2}}-2$.

9 Let x be the length of one piece, which makes a square $x / 4$ meters to a side. The other length is $8-x$, which makes a square $\frac{8-x}{4}$ to a side. The areas of the squares is $(x / 4)^{2}$ and $\left(\frac{8-x}{4}\right)^{2}$, and we're given that

$$
\left(\frac{x}{4}\right)^{2}+\left(\frac{8-x}{4}\right)^{2}=2
$$

Solving yields $x=4$, so each piece of wire is 4 meters long.

10a Write $\sqrt{2 x-3}=1+\sqrt{x-2}$, square to get $2 x-3=1+2 \sqrt{x-2}+(x-2)$, and then isolate the remaining radical to get

$$
2 \sqrt{x-2}=x-2 \Rightarrow 4(x-2)=(x-2)^{2} \Rightarrow x^{2}-8 x+12=0
$$

The trinomial factors, giving $(x-6)(x-2)=0$, and therefore $x=2,6$.

10b Factor: $\left(2 x^{1 / 3}-3\right)\left(x^{1 / 3}+5\right)=0$, so $2 x^{1 / 3}=3$ or $x^{1 / 3}=-5$, and hence $x=\frac{27}{8},-125$. (The substitution $u=x^{1 / 3}$ may help but is not essential.)

10c We get $|2 x-1|=9$, and hence $2 x-1= \pm 9$. Solutions are $x=-4,5$.

11a Solving leads to $x \geq 8$, so the solution set is $[8, \infty)$.

11b We get $|-2 x+7|>4$, implying $-2 x+7>4$ or $-2 x+7<-4$, and thus $x<\frac{3}{2}$ or $x>\frac{11}{2}$. Solution set is $\left(-\infty, \frac{3}{2}\right) \cup\left(\frac{11}{2}, \infty\right)$.

11c Divide by -3 to get $|x+7| \leq 9$, so $-9 \leq x+7 \leq 9$, and therefore $-16 \leq x \leq 2$. Solution set is $[-16,2]$.

