1 $A = 6000(1 + 0.0088/4)^{16} = $6214.72, A = 6000e^{0.0084(4)} = 6205.03 . The quarterly compounded investment reaps the greater reward.

2a $(-14,\infty)$

2b Need $x^2 - 4x - 12 > 0$, so domain is $(-\infty, -2) \cup (6, \infty)$.

3 $\log_4 \frac{x^{1/3}(x+1)^2}{y^{1/3}}.$

4 C - 2A

5a $5^{2-x} = 5^{-3}$ implies 2 - x = -3, so x = 5.

5b Let $u = e^x$, so $u^2 - 2u - 3 = 0$, giving $e^x = u = -1, 3$. But $e^x = -1$ has no solution, leaving $e^x = 3$ to yield the final solution $x = \ln 3$.

5c $8^2 = 1 - 3x$, giving x = -21.

5d Write $\log_3 \frac{(x+4)^2}{9} = 2$, so $\frac{(x+4)^2}{9} = 3^2$, giving x = -13, 5. But -13 is extraneous, so solution set is $\{5\}$.

6 For $A(t) = A_0 e^{-kt}$ we have $\frac{1}{2}A_0 = A(7340) = A_0 e^{-7340k}$, so $e^{-7340k} = \frac{1}{2}$, and hence k = 0.00009443. The completed model is now $A(t) = A_0 e^{-0.00009443t}$, and we find t such that $A(t) = 0.18A_0$. This implies

$$A_0 e^{-0.00009443t} = 0.18A_0,$$

or $e^{-0.00009443t} = 0.18$. Solving, we get $t \approx 18,159$ years.

- **7** Solution is (-6, -2).
- 8 Letting x be the first number and y the second number, we obtain the system

$$\begin{cases} 3x + 2y = 8\\ 2x - y = 3 \end{cases}$$

Solving yields x = 2 and y = 1.

- **9** Solution is (0, 1, 2).
- **10** Solution set is $\{(0, -2), (0, 2), (-1, -\sqrt{3}), (-1, \sqrt{3})\}.$

11 Let x, y, and z be the number of \$8, \$10, and \$12 tickets sold, respectively. Then we obtain the system

$$\begin{cases} x + y + z = 400\\ 8x + 10y + 12z = 3700\\ x + y = 7z \end{cases}$$

Solving the system yields (x, y, z) = (200, 150, 50).