$1 A=6000(1+0.0088 / 4)^{16}=\$ 6214.72, A=6000 e^{0.0084(4)}=\$ 6205.03$. The quarterly compounded investment reaps the greater reward.

2a $(-14, \infty)$

2b Need $x^{2}-4 x-12>0$, so domain is $(-\infty,-2) \cup(6, \infty)$.
$3 \log _{4} \frac{x^{1 / 3}(x+1)^{2}}{y^{1 / 3}}$.
$4 C-2 A$

5a $\quad 5^{2-x}=5^{-3}$ implies $2-x=-3$, so $x=5$.
5b Let $u=e^{x}$, so $u^{2}-2 u-3=0$, giving $e^{x}=u=-1,3$. But $e^{x}=-1$ has no solution, leaving $e^{x}=3$ to yield the final solution $x=\ln 3$.

5c $\quad 8^{2}=1-3 x$, giving $x=-21$.
5d Write $\log _{3} \frac{(x+4)^{2}}{9}=2$, so $\frac{(x+4)^{2}}{9}=3^{2}$, giving $x=-13,5$. But -13 is extraneous, so solution set is $\{5\}$.

6 For $A(t)=A_{0} e^{-k t}$ we have $\frac{1}{2} A_{0}=A(7340)=A_{0} e^{-7340 k}$, so $e^{-7340 k}=\frac{1}{2}$, and hence $k=0.00009443$. The completed model is now $A(t)=A_{0} e^{-0.00009443 t}$, and we find $t$ such that $A(t)=0.18 A_{0}$. This implies

$$
A_{0} e^{-0.00009443 t}=0.18 A_{0}
$$

or $e^{-0.00009443 t}=0.18$. Solving, we get $t \approx 18,159$ years.
7 Solution is $(-6,-2)$.

8 Letting $x$ be the first number and $y$ the second number, we obtain the system

$$
\left\{\begin{array}{l}
3 x+2 y=8 \\
2 x-y=3
\end{array}\right.
$$

Solving yields $x=2$ and $y=1$.
9 Solution is $(0,1,2)$.
10 Solution set is $\{(0,-2),(0,2),(-1,-\sqrt{3}),(-1, \sqrt{3})\}$.

11 Let $x, y$, and $z$ be the number of $\$ 8, \$ 10$, and $\$ 12$ tickets sold, respectively. Then we obtain the system

$$
\left\{\begin{aligned}
x+y+z & =400 \\
8 x+10 y+12 z & =3700 \\
x+y & =7 z
\end{aligned}\right.
$$

Solving the system yields $(x, y, z)=(200,150,50)$.

