Math 120 Exam \#3 Key (Spring 2022)

$1 \sqrt{\left(-\frac{1}{2}+5\right)^{2}+(3-7)^{2}}=\sqrt{145 / 4}=\frac{\sqrt{145}}{2}$.

2 Complete squares to get $(x-2)^{2}+(y-6)^{2}=49$. Center is at $(2,6)$, radius is 7 .

3 With $-\frac{b}{2 a}=-3$, vertex is at $(-3, f(-3))=(-3,21)$. The domain is $(-\infty, \infty)$ and the range is $(-\infty, 21]$.

4a Rocket reaches maximum height at time $t=-\frac{b}{2 a}=4$ seconds.

4b Maximum height is $h(4)=256$ feet.

4c Find times t for which $h(t)=0$, or $-16 t^{2}+128 t=0$. Solutions are $t=0$ and $t=8$. So rocket returns to Earth at 8 seconds.

5 From the long division

$$
\left.x^{2}+x-2\right) \begin{aligned}
& x^{2}+x-3 \\
&+2 x^{3}-4 x^{2}-5 x-6 \\
&-x^{4}-x^{3}+2 x^{2} \\
& x^{3}-2 x^{2}-5 x \\
&-x^{3}-x^{2}+2 x \\
&-3 x^{2}-3 x-6 \\
& 3 x^{2}+3 x-6 \\
&-12
\end{aligned}
$$

we have

$$
\frac{x^{4}+2 x^{3}-4 x^{2}-5 x-6}{x^{2}+x-2}=x^{2}+x-3-\frac{12}{x^{2}+x-2} .
$$

6 Equation is $f(x)=0$ with $f(x)=x^{4}-2 x^{2}-16 x-15$. Possible rational zeros are $\pm 1, \pm 3, \pm 5, \pm 15$. Through trial-and error we find -1 is a hit:

$$
\begin{array}{llrr|r}
-1 \\
& 1 & 0 & -2 & -16 \\
-15 \\
& -1 & 1 & 1 & 15 \\
\hline 1 & -1 & -1 & -15 & 0
\end{array} \longrightarrow f(x)=(x+1)\left(x^{3}-x^{2}-x-15\right) .
$$

The factor $g(x)=x^{3}-x^{2}-x-15$ has the same list of possible rational zeros, and we find 3 is one:

$$
\begin{array}{crr|r}
3 & 1 & -1 & -1 \\
& -15 \\
& 3 & 6 & 15 \\
\hline 1 & 2 & 5 & 0
\end{array} \longrightarrow g(x)=(x-3)\left(x^{2}+2 x+5\right) .
$$

Now $f(x)=(x+1)(x-3)\left(x^{2}+2 x+5\right)$, so $f(x)=0$ if and only if $x=-1,3,-1 \pm 2 i$.

7 (1) No symmetry; (2) $R(0)=2$; (3) $R(x)=0$ if $x=-3,2$; (4) v.a. is $x=3$; (5) $y=x+4$ is slant asymptote; (6) additional points as needed. For (7) the sketch should resemble the graph below.

8a Let $f(x)=(x+1)(x-2)(x+3)$, so inequality is $f(x)>0$. The x-intercepts are $-3,-1,2$. For intervals $(-\infty,-3),(-3,-1),(-1,2),(2, \infty)$ choose test values like $-4,-2,0$, 3 , respectively. Since $f(-4)<0, f(-2)>0, f(0)<0, f(3)>0$, by the Intermediate Value Theorem we conclude that $f(x)>0$ on $(-3,-1) \cup(2, \infty)$.

8b Write as

$$
\frac{x}{x-6}-1 \leq 0 \quad \hookrightarrow \quad \frac{6}{x-6} \leq 0
$$

Now, $\frac{6}{x-6}=0$ has no solution, while $\frac{6}{x-6}<0$ can only occur if $x-6<0$, or $x<6$. Solution set is therefore $(-\infty, 6)$.

