MATH 120 EXAM #2 KEY (SPRING 2022)

1
$$f(-1) = 12$$
, $f(-x) = f(x+3) = x^2 + 3x + 8$.

2a
$$g(-1) = 0$$
, $g(0) = 2$, $g(3)$ is undefined.

2b Dom
$$g = [-3, 3)$$
, Ran $g = [0, 3)$.

- **3a** Symmetric about origin only.
- **3b** Neither.

4a

- **4b** The graph may help: Dom $p = (-\infty, 1) \cup (1, \infty)$, Ran $p = (-\infty, 0] \cup (3, \infty)$.
- 5 Slope is $-\frac{5}{6}$, so $y (-2) = -\frac{5}{6}(x (-3))$ is the equation, which becomes $y = -\frac{5}{6}x \frac{9}{2}$.
- **6** x = -3
- 7 Equation is $y (-6) = -\frac{3}{2}(x-2)$, which in slope-intercept form is $y = -\frac{3}{2}x 3$. The y-intercept is -3.
- **8** y-2x+5=0 becomes y=2x-5, so the given line has slope 2, and hence L has slope $-\frac{1}{2}$. Equation for L is thus $y-2=-\frac{1}{2}(x+1)$, or $y=-\frac{1}{2}x+\frac{3}{2}$.
- **9a** Dom $f = (-\infty, -2) \cup (-2, 2) \cup (2, \infty)$.
- **9b** Dom $r = \{x \mid x \neq 0 \text{ and } 12/x \neq 4\} = (-\infty, 0) \cup (0, 3) \cup (3, \infty).$

10a Dom $F = [-8, \infty)$, Dom $G = (-\infty, 10]$.

10b
$$(F-G)(x) = \sqrt{x+8} - \sqrt{10-x}$$
 with $Dom(F-G) = Dom F \cap Dom G = [-8, 10].$

10c
$$(F/G)(x) = \frac{\sqrt{x+8}}{\sqrt{10-x}}$$
 with $Dom(F/G) = [-8, 10)$.

11a
$$(f \circ g)(x) = f(g(x)) = f(\frac{1}{2x}) = \frac{5}{\frac{1}{2x} - 4}.$$

11b Dom
$$f = \{x \mid x \neq 4\}$$
 and Dom $g = \{x \mid x \neq 0\}$, so Dom $(f \circ g) = \{x \mid x \in \text{Dom } g \text{ and } g(x) \in \text{Dom } f\}$
$$= \{x \mid x \neq 0 \text{ and } \frac{1}{2x} \neq 4\}$$
$$= \{x \mid x \neq \frac{1}{8}, 0\}$$
$$= (-\infty, 0) \cup (0, \frac{1}{8}) \cup (\frac{1}{8}, \infty).$$

12a Set y = f(x), and solve for x:

$$y = \frac{2x+1}{6-x} \quad \longleftrightarrow \quad 6y-xy = 2x+1 \quad \longleftrightarrow \quad x = \frac{6y-1}{y+2} \quad \longleftrightarrow \quad f^{-1}(y) = \frac{6y-1}{y+2}.$$

12b Ran $f^{-1} = \text{Dom } f = (-\infty, 6) \cup (6, \infty)$ and Ran $f = \text{Dom } f^{-1} = (-\infty, -2) \cup (-2, \infty)$.