Math 120 Exam \#2 Key (Spring 2022)

$1 f(-1)=12, f(-x)=f(x+3)=x^{2}+3 x+8$.

2a $g(-1)=0, g(0)=2, g(3)$ is undefined.

2b $\operatorname{Dom} g=[-3,3), \operatorname{Ran} g=[0,3)$.

3a Symmetric about origin only.

3b Neither.

4a

4b The graph may help: $\operatorname{Dom} p=(-\infty, 1) \cup(1, \infty), \operatorname{Ran} p=(-\infty, 0] \cup(3, \infty)$.

5 Slope is $-\frac{5}{6}$, so $y-(-2)=-\frac{5}{6}(x-(-3))$ is the equation, which becomes $y=-\frac{5}{6} x-\frac{9}{2}$.
$6 x=-3$

7 Equation is $y-(-6)=-\frac{3}{2}(x-2)$, which in slope-intercept form is $y=-\frac{3}{2} x-3$. The y-intercept is -3 .
$8 y-2 x+5=0$ becomes $y=2 x-5$, so the given line has slope 2 , and hence L has slope $-\frac{1}{2}$. Equation for L is thus $y-2=-\frac{1}{2}(x+1)$, or $y=-\frac{1}{2} x+\frac{3}{2}$.

9a $\operatorname{Dom} f=(-\infty,-2) \cup(-2,2) \cup(2, \infty)$.

9b $\operatorname{Dom} r=\{x \mid x \neq 0$ and $12 / x \neq 4\}=(-\infty, 0) \cup(0,3) \cup(3, \infty)$.

10a $\operatorname{Dom} F=[-8, \infty)$, $\operatorname{Dom} G=(-\infty, 10]$.

10b $(F-G)(x)=\sqrt{x+8}-\sqrt{10-x}$ with $\operatorname{Dom}(F-G)=\operatorname{Dom} F \cap \operatorname{Dom} G=[-8,10]$.

10c $(F / G)(x)=\frac{\sqrt{x+8}}{\sqrt{10-x}}$ with $\operatorname{Dom}(F / G)=[-8,10)$.

11a $(f \circ g)(x)=f(g(x))=f\left(\frac{1}{2 x}\right)=\frac{5}{\frac{1}{2 x}-4}$.

11b $\operatorname{Dom} f=\{x \mid x \neq 4\}$ and $\operatorname{Dom} g=\{x \mid x \neq 0\}$, so

$$
\begin{aligned}
\operatorname{Dom}(f \circ g) & =\{x \mid x \in \operatorname{Dom} g \text { and } g(x) \in \operatorname{Dom} f\} \\
& =\left\{x \mid x \neq 0 \text { and } \frac{1}{2 x} \neq 4\right\} \\
& =\left\{x \left\lvert\, x \neq \frac{1}{8}\right., 0\right\} \\
& =(-\infty, 0) \cup\left(0, \frac{1}{8}\right) \cup\left(\frac{1}{8}, \infty\right) .
\end{aligned}
$$

12a Set $y=f(x)$, and solve for x :

$$
y=\frac{2 x+1}{6-x} \quad \hookrightarrow \quad 6 y-x y=2 x+1 \quad \hookrightarrow \quad x=\frac{6 y-1}{y+2} \quad \hookrightarrow \quad f^{-1}(y)=\frac{6 y-1}{y+2}
$$

12b $\operatorname{Ran} f^{-1}=\operatorname{Dom} f=(-\infty, 6) \cup(6, \infty)$ and $\operatorname{Ran} f=\operatorname{Dom} f^{-1}=(-\infty,-2) \cup(-2, \infty)$.

