Math 120 Exam \#4 Key (Spring 2019)

1a Suppose $f(a)=f(b)$, giving

$$
\frac{6 a-3}{2 a+1}=\frac{6 b-3}{2 b+1} \Rightarrow(6 a-3)(2 b+1)=(6 b-3)(2 a+1) \Rightarrow 12 a=12 b \Rightarrow a=b
$$

and therefore f is one-to-one.

1b By definition $f(x)=y$ if and only if $f^{-1}(y)=x$. Let $y=f(x)$, so $y=(6 x-3) /(2 x+1)$. Solving for x gives $x=(y+3) /(6-2 y)$, and hence

$$
f^{-1}(y)=\frac{y+3}{6-2 y}
$$

$2 y=x^{2}-2 x$

3

$4 e^{t}=W^{5}$ and $\log 2=0.3010$.
$5(-\infty, 0) \cup(0, \infty)$

6 With laws of logarithms,

$$
3 \log _{a} x-\frac{5}{2} \log _{a} p-4 \log _{a} q .
$$

$7 \quad \frac{1}{3}$

8a We get $3^{3}=3^{5 x+2 x^{2}}$, implying $2 x^{2}+5 x=3$, and hence $x=\frac{1}{2},-3$.

8b Write as $e^{2 x}-5 e^{x}+1=0$, and so by the quadratic formula

$$
e^{x}=\frac{5 \pm \sqrt{21}}{2}
$$

and therefore

$$
x=\ln \left(\frac{5 \pm \sqrt{21}}{2}\right) .
$$

8c Rewrite as $2^{5}=10+3 x$, and hence $x=\frac{22}{3}$.

8d We have

$$
\log _{4}\left(x^{2}-9\right)=2 \Rightarrow 4^{2}=x^{2}-9 \quad \Rightarrow \quad x= \pm 5
$$

But $x=-5$ is extraneous, so the solution set is $\{5\}$.

8e Square both sides to get

$$
\ln x=(\ln \sqrt[4]{x})^{2}=\left(\frac{1}{4} \ln x\right)^{2}=\frac{1}{16}(\ln x)^{2}
$$

and hence $(\ln x)^{2}-16 \ln x=0$. Factoring gives

$$
(\ln x)(\ln x-16)=0
$$

so that either $\ln x=0$ (so $x=1$) or $\ln x=16$ (so $\left.x=e^{16}\right)$. Solution set is $\left\{1, e^{16}\right\}$.
9 The basic model is $A(t)=A_{0} e^{-k t}$, but we know $A(5750)=A_{0} / 2$; that is,

$$
A_{0} e^{-5750 k}=\frac{A_{0}}{2} \Rightarrow e^{-5750 k}=\frac{1}{2} \Rightarrow k=\frac{\ln 2}{5750} \approx 0.0001205
$$

Now we have $A(t)=A_{0} e^{-0.0001205 t}$, and we must find t such that $A(t)=0.667 A_{0}$:

$$
A_{0} e^{-0.0001205 t}=0.667 A_{0} \Rightarrow e^{-0.0001205 t}=0.667 \quad \Rightarrow \quad-0.0001205 t=\ln 0.667
$$

and so

$$
t=\frac{\ln 0.667}{-0.0001205} \approx 3361 \text { years }
$$

is the age of the mummies at the time of discovery.

10 Solution is $\left(\frac{1}{2}, \frac{3}{4}\right)$.

11 System is consistent but dependent, with solution set expressible as

$$
\{(x, 5 x-12,11 x-28): x \text { is real }\}
$$

12 Let x be the number of pounds of French roast, and y the number of pounds of Colombian. Noting that $10.50(20)=210$, we have

$$
\left\{\begin{aligned}
x+y & =20 \\
12 x+9.50 y & =210
\end{aligned}\right.
$$

Solving the system gives $x=8$ and $y=12$.

