## Math 120 Exam \#3 Key (Spring 2019)

1 Zeros are 0 (multiplicity 1 ), 19 (multiplicity 9 ), and -17 (multiplicity 4).
2 We have $f(-3)=50$ and $f(1)=-2$, so 0 lies between $f(-3)$ and $f(1)$, and therefore there exists some $c \in(-3,1)$ such that $f(c)=0$ by the Intermediate Value Theorem.

3 From the long division

$$
x+2) \begin{array}{r}
\frac{x^{3}-2 x^{2}+2 x-4}{x^{4}-2 x^{2}+3} \\
\frac{-x^{4}-2 x^{3}}{-2 x^{3}-2 x^{2}} \\
\frac{2 x^{3}+4 x^{2}}{2 x^{2}} \\
\frac{-2 x^{2}-4 x}{-4 x+3} \\
\frac{4 x+8}{11}
\end{array}
$$

we see $Q(x)=x^{3}-2 x^{2}+2 x-4$ and $R(x)=11$, and thus

$$
P(x)=(x+2)\left(x^{3}-2 x^{2}+2 x-4\right)+11 .
$$

4 Synthetic division shows the quotient is $4 x^{4}-4 x^{3}+4 x^{2}-6 x+6$ and the remainder is -11 :

$$
\begin{array}{c|rrrr|r}
-1 & & 0 & 0 & -2 & 0 \\
4 & -5 \\
& -4 & 4 & -4 & 6 & -6 \\
\hline 4 & -4 & 4 & -6 & 6 & -11
\end{array} \longrightarrow 4 x^{4}-4 x^{3}+4 x^{2}-6 x+6-\frac{11}{x+1} .
$$

5 Possible rational zeros are $\pm 1, \pm 2, \pm 3, \pm 6, \pm 9, \pm 18, \pm 27, \pm 54$. Trial and error shows -2 is one:

$$
\begin{array}{l|rrrr|r}
-2 & 1 & -7 & 9 & 27 & -54 \\
& & -2 & 18 & -54 & 54 \\
\hline & -9 & -9 & 27 & -27 & 0
\end{array}
$$

Thus, with factoring by grouping and the difference of cubes factoring formula, we obtain

$$
\begin{aligned}
f(x) & =(x+2)\left(x^{3}-9 x^{2}+27 x-27\right) \\
& =(x+2)\left[\left(x^{3}-27\right)-\left(9 x^{2}-27 x\right)\right] \\
& =(x+2)\left[(x-3)\left(x^{2}+3 x+9\right)-9 x(x-3)\right] \\
& =(x+2)(x-3)\left(x^{2}-6 x+9\right) \\
& =(x+2)(x-3)^{3} .
\end{aligned}
$$

The equation $f(x)=0$ has solution set $\{-2,3\}$.
6 The simplest choice is $x(x+2)(x-3)^{2}$, though $c x(x+2)(x-3)^{2}$ for any $c \neq 0$ works.

7 The additional zero $2+i$ will need to be included in order to have rational coefficients. Thus we have

$$
f(x)=(x+1)[x-(2-i)][x-(2+i)]=(x+1)\left(x^{2}-4 x+5\right)=x^{3}-3 x^{2}+x+5
$$

8 Possible rational zeros are $\pm 1, \pm 2, \pm 4, \pm 8, \pm \frac{1}{2}$. Indeed -2 works:

$$
\begin{array}{l|rrr|r}
-2 & 2 & 7 & 2 & -8 \\
& -4 & -6 & 8 \\
\hline 2 & 3 & -4 & 0
\end{array}
$$

So $f(x)=(x+2)\left(2 x^{2}+3 x-4\right)$. The trinomial $2 x^{2}+3 x-4$ does not lend itself to direct factoring. Setting $2 x^{2}+3 x-4=0$, the quadratic formula or completing the square gives $x=\frac{-3 \pm \sqrt{41}}{4}$. Thus the zeros of $f$ are $-2, \frac{-3+\sqrt{41}}{4}, \frac{-3-\sqrt{41}}{4}$, and $f(x)$ factors as

$$
f(x)=2(x+2)\left(x+\frac{3-\sqrt{41}}{4}\right)\left(x+\frac{3+\sqrt{41}}{4}\right) .
$$

Note the 2 at left of the factors: without it we would get the wrong lead coefficient!

## 9 Writing

$$
G(x)=\frac{x(x+3)}{x(x-3)(2 x+1)}
$$

we see that $\operatorname{Dom}(G)=\left\{x: x \neq-\frac{1}{2}, 0,3\right\}$. Vertical asymptotes are $x=-\frac{1}{2}$ and $x=3$, with a hole at $(0,-1)$. Horizontal asymptote is $y=0$. The equation $G(x)=0$ yields only $x=-3$ as a solution, so $(-3,0)$ is the only intercept. Graph follows, with hole and intercept marked.


10a Factoring gives $(x-2)(x+1)>0$, and hence either $x<-1$ or $x>2$. Solution set is $(-\infty,-1) \cup(2, \infty)$.

10b Move everything to one side:

$$
x^{3}+4 x^{2}+x-6 \leq 0 .
$$

We find that 1 is a zero of the polynomial, and so with synthetic division we get

$$
x^{3}+4 x^{2}+x-6=(x-1)\left(x^{2}+5 x+6\right)=(x-1)(x+2)(x+3) \leq 0 .
$$

Solution set: $(-\infty,-3] \cup[-2,1]$.
10c We have

$$
\frac{x}{x-2}+1 \geq 0 \Rightarrow \frac{x-1}{x-2} \geq 0
$$

Solution set is $(-\infty, 1] \cup(2, \infty)$.

